II. SIGNAL MODEL
在本节中,我们开发了一个采用波形分集和旁瓣控制的DFRC信号模型。所提出的系统和在[14]中报告的系统是所开发模型的特殊情况,这将在以下几节中变得明显。
考虑配备一个双功能发射阵列、一个雷达接收阵列和一个(或多个)通信接收阵列的DRFC系统。有 M T M_{T} MT 发射阵列和 M R M_{R} MR 接受天线 ,我们假设雷达发射阵列和接收阵列彼此紧密间隔,这样位于远场的目标相对于两个阵列将处于相同的空间角度。双功能发射阵列的目的是在不影响DFRC系统的主要任务,即雷达工作的情况下,将信息作为次要任务向通信接收机的方向嵌入。发射阵列用于将发射功率聚焦在主波束内。
发射天线输入信号的基带表示由
s
(
t
;
τ
)
=
∑
k
=
1
K
λ
k
(
τ
)
u
k
∗
ψ
k
(
t
)
,
{\bf s}(t;\tau)=\sum^{K}_{k=1}\lambda_{k}(\tau){\bf u}^{\ast}_{k}\psi_{k}(t),
s(t;τ)=k=1∑Kλk(τ)uk∗ψk(t),
其中 t t t 和 τ \tau τ 分别表示快时间指数(即雷达脉冲内的时间)和慢时间指数(即脉冲数), ψ k ( t ) , k = 1 , … , K \psi_{k}(t),k=1,\ldots,K ψk(t),k=1,…,K 为正交波形,在零时延时满足正交条件, ∫ T ψ k ( t ) ψ k ′ ∗ ( t ) = 0 , k ≠ k ′ \int_{\rm T}\psi_{k}(t)\psi^{\ast}_{k^{\prime}}(t)=0,k\neq k^{\prime} ∫Tψk(t)ψk′∗(t)=0,k=k′,其中 T T T 是脉冲宽度。
正交波形可以用来接收机处的匹配滤波,提取与每个发射波形相关联的接收信号分量。值得注意的是,发射信号矢量中的基带信号 s ( t ; τ ) {\bf s}(t;\tau) s(t;τ) 不必正交。传输权重矢量 u k , k = 1 , … , K {\bf u}_{k},k=1,\ldots,K uk,k=1,…,K 目的是两方面的:
- 在雷达操作的主波束内发射功率,同时最小化扇区外区域的辐射功率;
- 通过实现某些预先确定的 SLLs,实现向通信方向嵌入信息。
设计传输权重向量的适当方法将在稍后的第三节中讨论。
假设 L L L 个远场目标位于雷达主波束的区域内,雷达接受到的 M R × 1 M_{R}\times 1 MR×1 基带信号向量表示为
雷达接收到的基带信号表示为
x ( t ; τ ) = ∑ m = 1 L β m ( τ ) ( a T ( θ m ) s ( t ; τ ) ) b ( θ m ) + x ( t ; τ ) + z ( t ; τ ) , {\bf x}(t;\tau)\!=\!\sum_{m=1}^{L}\beta_{m}(\tau)\left({\bf a}^{T}(\theta_{m}){\bf s}(t;\tau)\right){\bf b}(\theta_{m})\!+\bf x(t;\tau)\!+\!{\bf z}(t;\tau), x(t;τ)=m=1∑Lβm(τ)(aT(θm)s(t;τ))b(θm)+x(t;τ)+z(t;τ),
其中 β m ( τ ) \beta_{m}(\tau) βm(τ) 是第 m m m 个探测目标的反射系数,服从Swerling II目标模型,即反射率在整个雷达脉冲期间保持不变,但在不同脉冲之间发生变化。
a ( θ m ) {\bf a}(\theta_{m}) a(θm)和 b ( θ m ) {\bf b}(\theta_{m}) b(θm) 分别是发射和接收方向在方向 θ m \theta_m θm 上 M T × 1 M_{T}\times 1 MT×1 和 M R × 1 M_{R}\times 1 MR×1 引导矢量。
z ( t ; τ ) {\bf z}(t;\tau) z(t;τ),是加性白高斯的向量
A. Case 1: Narrow Main Beam
考虑雷达主波束聚焦于空间角 θ t \theta_{t} θt 的情况。设计每个传输权向量 u k , k = 1 , … , K {\bf u}_{k},k=1,\ldots,K uk,k=1,…,K 的一种有意义的方法是最小化扇形外区域 Θ ˉ \bar{\mathbf \Theta} Θˉ 的功率辐射水平,同时保持对所需方向 θ t \theta_{t} θt 的无失真响应。此外,在通信接收器所在的方向上强制执行某种预先指定的SSL(sidelobe levels)。假设通信接收机数量小于发射天线数量,即 J < M T J<M_T J<MT,则发射波束形成设计可表示为以下优化问题
min u k max θ ∣ u k H a ( θ ) ∣ , θ ∈ Θ ˉ , s u b j e c t t o u k H a ( θ t ) = 1 , u k H a ( θ j ) = Δ k , j = 1 , … , J , \begin{aligned} &\min_{\mathbf{u}_k}\max_\theta& &\left|\mathbf{u}_k^H\mathbf{a}(\theta)\right|,\quad\theta\in\bar{\boldsymbol{\Theta}},\\ &\mathrm{subject~to~} & &\mathbf{u}_k^H\mathbf{a}(\theta_t)=1,\\ & & &\mathbf{u}_k^H\mathbf{a}(\theta_j)=\Delta_k,\quad j=1,\ldots,J,\end{aligned} ukminθmaxsubject to ukHa(θ) ,θ∈Θˉ,ukHa(θt)=1,ukHa(θj)=Δk,j=1,…,J,
其中 Δ k \Delta_{k} Δk 是预先确定的正数,来确定第 k k k 个发射波束向通信方向辐射的发射功率量。优化问题(4)-(6)是凸的,可以用内点法有效地求解[22]。值得注意的是,上述优化问题需要求解 K K K 次,即对每个 u k , k = 1 , … , K {\bf u}_{k},k=1,\ldots,K uk,k=1,…,K 都要求解。注意式(5)、式(6)中相等约束的总数等于 J + 1 ≤ M T J+1≤M_T J+1≤MT,小于等于自由度和的个数,因此一定存在一个可行解。但是,如果通信方向的数量大于 M T M_T MT,则有可能使问题变得不可行的。在这种情况下,应放宽(6)中的等号(例如,将其更改为不等式),并应仔细选择 Δ k Δ_k Δk 的值,以保证问题的放松形式的可行解。
VI.Simulation Results
考虑均匀线性发射阵列由 M T = 10 M_{T}=10 MT=10 间隔为半波长的天线组成。在每个雷达脉冲期间,通信信息 L B = 2 L_{B}=2 LB=2 比特被发送到位于旁瓣区域的通信方向。在所有的仿真示例中,我们提供了所提出的两种方法与[14]方法之间的比较。为了实现[14]中基于SLL的方法,我们设计了 2 L B = 4 2^{L_{B}}=4 2LB=4 发射波束形成权向量。另一方面,所提出的方法只使用了两个传输权向量。
Example 1: Transmit Beampattern Design for Narrow Main Beam:
我们首先研究了采用固定的主波束和可变的SLL向多个通信方向合成发射功率分布模式的可能性。这种场景能够同时向多个通信方向发送某一通信消息。
对于传输权重向量 u k , k = 1 , … , 4 {\bf u}_{k},k=1,\ldots,4 uk,k=1,…,4,将它们各自的主波束聚焦到雷达操作方向 θ r a d a r = 0 ∘ \theta_{\rm radar}=0^{\circ} θradar=0∘,是通过求解(4)-(6)得到的。假设3个通信接收机分别位于 θ 1 = − 5 0 ∘ \theta_{1}=-50^{\circ} θ1=−50∘、 θ 2 = − 3 0 ∘ \theta_{2}=-30^{\circ} θ2=−30∘、和方向 θ 3 = 4 0 ∘ \theta_{3}=40^{\circ} θ3=40∘。关于 u k , k = 1 , … , 4 {\bf u}_{k},k=1,\ldots,4 uk,k=1,…,4 的通信 SLLs 被限制在 Δ 1 2 = 0.01 \Delta^{2}_{1}=0.01 Δ12=0.01 或 -20dB, Δ 2 2 = 0.0033 \Delta^{2}_{2}=0.0033 Δ22=0.0033 or -21.76dB, Δ 3 2 = 0.0066 \Delta^{2}_{3}=0.0066 Δ32=0.0066 或-24.77 dB, Δ 4 2 = 1 0 − 4 \Delta^{2}_{4}=10^{-4} Δ42=10−4 或40dB,都是相对于主波的。对于所有其他副瓣方向,SLLs通过选择 ε = 0.1 \varepsilon=0.1 ε=0.1 来控制。
图5显示了所有传输权重向量的归一化发射功率分布模式与角度的关系。我们观察到,正如预期的那样,所有发射权重向量在主波束内具有几乎相同的图案,这意味着如果波形通过任意一个发射波束辐射,雷达操作将不会受到影响。此外,通信方向的SLL彼此明显分开,从而使通信接收机能够检测到在某一雷达脉冲期间使用了哪一发射SLL,进而确定相关的信息电文。因此,信息嵌入可以通过选择在任一发射波束上辐射特定的波形来进行。
%figure5 of the paper
%dual function radar and communication 代码复现
%paper:Dual Function Radar Communications Information Embedding Using Sidelobe Control and Waveform Diversity
%case1:narrow mainlobe
%convex optimal problem
clc,clear;
close all;
%% parameters
% radar parameters
c = 3e8;%speed of light
f0 = 24e9;%carrier frequency
lambda = c/f0;%wavelength
N = 10;%number of elements
d = lambda/2;%distance between elements
%% variables
theta = -90:0.5:90; %angle range
mainlobe = [-10 10]; %mainlobe 主瓣宽度
theta_start = find(theta == mainlobe(1));%主瓣开始Index
theta_end = find(theta == mainlobe(2));%主瓣结束Index
theta_main = theta(theta_start:theta_end);% theta in the mainlobe
theta_side = theta([1:theta_start-1,theta_end+1:length(theta)]);%theta in the sidelobe
theta_com = [-50 -30 40];% communication direction
theta_radar = 0;%radar direction
n = -(N-1)/2:(N-1)/2;
% n = 0:N-1;
a_side = exp(-1i*2*pi*d/lambda.*n'.*sind(theta_side));%steering vector of theta in sidelobe
a_main = exp(-1i*2*pi*d/lambda.*n'.*sind(theta_main));%steering vector of theta in mainlobe
a_t = exp(-1i*2*pi*d/lambda.*n*sind(theta_radar)).';% steering vector of radar direction
a_com = exp(-1i*2*pi*d/lambda.*n'.*sind(theta_com));% steering vector of communication direction
delta = sqrt([0.01 0.0033 0.0066 1e-4]);% sidelobe level at communication direction
w0 = 1/N*ones(N,1);
pattern_dir = w0'*a_main;% desired beampattern in mainlobe
u1 = zeros(N,4); % optimal weight vector of four beampattern
%optimize four beampattern weight vector respectivly
for j= 1:4
cvx_begin
variable u(N,1) complex
variable b(1)
minimize b
subject to
% norm(pattern_dir-u.'*a_main,1)<=b;
u'*a_t == 1;
max(abs(u'*a_side)) <= b;
u'*a_com(:,1) == delta(j);
u'*a_com(:,2) == delta(j);
u'*a_com(:,3) == delta(j);
cvx_end
%
u1(:,j)=u;%save optimial weight vector
% clear u
end
%% plot
% plot four beam pattern
hold on
y1 = u1(:,1)'*exp(-1i*2*pi*d/lambda.*n'.*sind(theta));
mag1 = db(abs(y1));%db(x)得到的结果为20log_10(x)
y2 = u1(:,2)'*exp(-1i*2*pi*d/lambda.*n'.*sind(theta));
mag2 = db(abs(y2));
y3 = u1(:,3)'*exp(-1i*2*pi*d/lambda.*n'.*sind(theta));
mag3 = db(abs(y3));
y4 = u1(:,4)'*exp(-1i*2*pi*d/lambda.*n'.*sind(theta));
mag4 = db(abs(y4));
figure;plot(theta,mag1,'r-.','linewidth',2);xlim([-90 90])
figure;plot(theta,mag2,'g--','linewidth',2);xlim([-90 90])
figure;plot(theta,mag3,'b:','linewidth',2);xlim([-90 90])
figure;plot(theta,mag4,'c-','linewidth',2);xlim([-90 90])
% grid minor
% xlabel('\theta')
% ylabel('Amplitude (dB)')
% ylim([-60 0])
% xlim([-90 90])
% plot([theta_com(1) theta_com(1)],[-60 0],'m--','linewidth',2)
% plot([theta_com(2) theta_com(2)],[-60 0],'m--','linewidth',2)
% plot([theta_com(3) theta_com(3)],[-60 0],'m--','linewidth',2)
% hold off
% set(gca,'fontsize',12)
% legend('1st transmitted pattern','2st transmitted pattern','3st transmitted pattern','4st transmitted pattern')
% title('Beampattern')