Large Language Models for Wireless Networks: An Overview from the Prompt Engineering Perspective

摘要——最近,大型语言模型(LLMs)已成功应用于许多领域,展示了卓越的理解和推理能力。尽管这些LLMs具有巨大的潜力,但通常需要专门的预训练和微调以适应特定领域应用,如无线网络。这些适应过程可能会对计算资源和数据集要求极高,而大多数网络设备的计算能力有限,且高质量的网络数据集较为稀缺。为此,本研究从提示工程(prompt engineering)的角度探索了LLM驱动的无线网络,即设计提示以引导LLM生成所需输出,而无需更新LLM参数。与其他LLM驱动的方法相比,提示工程能够更好地与无线网络设备的需求相契合,例如更高的部署灵活性、更快的响应时间和较低的计算能力要求。具体而言,本研究首先介绍了LLM的基本原理,并比较了不同的提示技术,如上下文学习、链式推理和自我修正。接着,我们提出了两种新的提示方案,旨在网络应用中的迭代优化和网络预测:用于网络优化的迭代提示和用于网络预测的自我修正提示。案例研究表明,所提出的方案能够实现与传统机器学习技术相当的性能,并且我们的提示驱动方法避免了专门的模型训练和微调,这也是现有机器学习技术的瓶颈之一。

关键词——大型语言模型,无线网络,提示工程

I. INTRODUCTION

作为生成式人工智能(generative AI)的一个子领域,大型语言模型(LLMs)已受到工业界和学术界的广泛关注[1]。生成式AI和LLM的进展为6G网络提供了有前景的机会,包括强大的推理和规划能力、多模态理解、6G传感、语义通信[2]、集成卫星-空中-地面网络[3]等。尽管具有巨大的潜力,但将LLM集成到无线网络中仍面临几个挑战。首先,无线网络是复杂的大规模系统,涉及多个知识领域,即信号处理和传输、网络架构和设计、协议、标准等。直接将通用领域的LLM应用于特定领域的网络任务可能导致性能不佳。其次,LLM的发展依赖于高质量的数据集进行微调适应,但高质量的网络数据集有限,例如SPEC5G和Tspec-LLM[1]。此外,LLM在计算资源方面的需求非常高。LLM的预训练和微调通常在高性能的GPU上实现,如NVIDIA A100和H100,但无线网络设备通常计算和存储能力有限。LLM涉及广泛的技术,如预训练、微调LLM以完成特定任务、检索增强生成(retrieval augmented generation,RAG)、提示工程等。因此,识别一种高效的方法,以更好地将LLM适应到无线网络中是至关重要的。

鉴于上述机会和挑战,本研究提出了提示工程,这被认为是一种资源高效和灵活的方法,能够使用LLM并具有快速的实现速度[4]。这些优势将有助于克服上述LLM应用挑战,例如部署困难和对计算资源的需求。具体而言,提示指的是设计输入提示来引导预训练的LLM生成期望的输出。它利用了预训练LLM固有的推理能力,并避

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

No_one-_-2022

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值