和差化积和积化和差

和差化积和积化和差

利用欧拉公式推导

通过欧拉公式可知
e j α = cos ⁡ α + j sin ⁡ α e j β = cos ⁡ β + j sin ⁡ β \begin{array}{l} {e^{j\alpha }} = \cos \alpha + j\sin \alpha \\ {e^{j\beta }} = \cos \beta + j\sin \beta \end{array} ejα=cosα+jsinαejβ=cosβ+jsinβ

e j ( α + β ) = e j α e j β cos ⁡ ( α + β ) + j sin ⁡ ( α + β ) = ( cos ⁡ α + j sin ⁡ α ) ( cos ⁡ β + j sin ⁡ β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β + j ( sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β ) (1) \begin{aligned} {e^{j\left( {\alpha + \beta } \right)}} &= {e^{j\alpha }}{e^{j\beta }}\\ \cos (\alpha + \beta ) + j\sin \left( {\alpha + \beta } \right) &= (\cos \alpha + j\sin \alpha )(\cos \beta + j\sin \beta ) \tag{1}\\ &= \cos \alpha \cos \beta - \sin \alpha \sin \beta + j(\sin \alpha \cos \beta + \cos \alpha \sin \beta ) \end{aligned} ej(α+β)cos(α+β)+jsin(α+β)=ejαejβ=(cosα+jsinα)(cosβ+jsinβ)=cosαcosβsinαsinβ+j(sinαcosβ+cosαsinβ)(1)
得到
cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β ( 2 ) sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β ( 3 ) \begin{aligned} \cos (\alpha + \beta ) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \quad\quad\quad\quad(2)\\ \sin \left( {\alpha + \beta } \right) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \quad\quad\quad\quad(3) \end{aligned} cos(α+β)=cosαcosβsinαsinβ(2)sin(α+β)=sinαcosβ+cosαsinβ(3)
使用-β替换β,根据cosα为偶函数,sinβ为奇函数的性质可以得到
cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β ( 4 ) sin ⁡ ( α − β ) = sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β ( 5 ) \begin{aligned} \cos (\alpha - \beta ) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \quad\quad\quad\quad(4) \\ \sin \left( {\alpha - \beta } \right) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \quad\quad\quad\quad(5) \end{aligned} cos(αβ)=cosαcosβ+sinαsinβ(4)sin(αβ)=sinαcosβcosαsinβ(5)
通过联立方程(2)和(4)得
cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α − β ) + cos ⁡ ( α + β ) ] sin ⁡ α sin ⁡ β = 1 2 [ cos ⁡ ( α − β ) − cos ⁡ ( α + β ) ] \begin{array}{l}\displaystyle \cos \alpha \cos \beta = \frac{1}{2}[\cos (\alpha - \beta ) + \cos (\alpha + \beta )] \\[0.01cm]\\\displaystyle \sin \alpha \sin \beta = \frac{1}{2}[\cos (\alpha - \beta ) - \cos (\alpha + \beta )] \end{array} cosαcosβ=21[cos(αβ)+cos(α+β)]sinαsinβ=21[cos(αβ)cos(α+β)]
同理联立方程(3)和(5)得
sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] \begin{array}{l}\displaystyle \sin \alpha \cos \beta = \frac{1}{2}[\sin (\alpha + \beta ) + \sin (\alpha - \beta )] \\[0.01cm]\\\displaystyle \cos \alpha \sin \beta = \frac{1}{2}[\sin (\alpha + \beta ) - \sin (\alpha - \beta )] \end{array} sinαcosβ=21[sin(α+β)+sin(αβ)]cosαsinβ=21[sin(α+β)sin(αβ)]

几何意义上理解

在这里插入图片描述

从图中可看出:
cos ⁡ α + cos ⁡ β 2 = cos ⁡ γ cos ⁡ θ = cos ⁡ α − β 2 cos ⁡ α + β 2 sin ⁡ α + sin ⁡ β 2 = cos ⁡ γ sin ⁡ θ = cos ⁡ α − β 2 sin ⁡ α + β 2 \begin{array}{l}\displaystyle \frac{{\cos \alpha + \cos \beta }}{2}{\rm{ = }}\cos \gamma \cos \theta = \cos \frac{{\alpha - \beta }}{2}\cos \frac{{\alpha + \beta }}{2} \\[0.01cm]\\ \displaystyle \frac{{\sin \alpha + \sin \beta }}{2}{\rm{ = }}\cos \gamma \sin \theta = \cos \frac{{\alpha - \beta }}{2}\sin \frac{{\alpha + \beta }}{2} \end{array} 2cosα+cosβ=cosγcosθ=cos2αβcos2α+β2sinα+sinβ=cosγsinθ=cos2αβsin2α+β
类似地有
cos ⁡ α − cos ⁡ β 2 = cos ⁡ α + cos ⁡ ( β + π ) 2 = − sin ⁡ α − β 2 sin ⁡ α + β 2 sin ⁡ α − sin ⁡ β 2 = sin ⁡ α + sin ⁡ ( β + π ) 2 = sin ⁡ α − β 2 cos ⁡ α + β 2 \begin{array}{l} \displaystyle \frac{{\cos \alpha - \cos \beta }}{2}{\rm{ = }}\frac{{\cos \alpha + \cos (\beta {\rm{ + }}\pi )}}{2} = - \sin \frac{{\alpha - \beta }}{2}\sin \frac{{\alpha + \beta }}{2} \\[0.01cm]\\\displaystyle \frac{{\sin \alpha - \sin \beta }}{2}{\rm{ = }}\frac{{\sin \alpha + \sin (\beta + \pi )}}{2} = \sin \frac{{\alpha - \beta }}{2}\cos \frac{{\alpha + \beta }}{2} \end{array} 2cosαcosβ=2cosα+cos(β+π)=sin2αβsin2α+β2sinαsinβ=2sinα+sin(β+π)=sin2αβcos2α+β

从向量内积理解

可令a= [ cos ⁡ α sin ⁡ α ] \begin{aligned} \left[ \begin{array}{l} \cos \alpha \\ \sin \alpha \end{array} \right] \end{aligned} [cosαsinα]b= [ cos ⁡ β sin ⁡ β ] \begin{aligned} \left[ \begin{array}{l} \cos \beta \\ \sin \beta \end{array} \right]\end{aligned} [cosβsinβ],从图中可以知道 cos ⁡ 2 γ \begin{aligned} \cos 2\gamma \end{aligned} cos2γ,也即 cos ⁡ ( α − β ) = a T b ∣ ∣ a ∣ ∣ . ∣ ∣ b ∣ ∣ \begin{aligned} \cos (\alpha - \beta ) = \frac{{{a^T}b}}{{||a||.||b||}}\end{aligned} cos(αβ)=a.baTb ,得到
cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β \cos (\alpha - \beta ) = \cos \alpha \cos \beta + \sin \alpha \sin \beta cos(αβ)=cosαcosβ+sinαsinβ
类似地令 β = β + π 2 \beta = \beta + \frac{\pi }{2} β=β+2π,可得
cos ⁡ [ α − ( β + π 2 ) ] = cos ⁡ α cos ⁡ ( β + π 2 ) + sin ⁡ α sin ⁡ ( β + π 2 ) sin ⁡ ( α − β ) = sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β \begin{aligned} \cos [\alpha - (\beta + \frac{\pi }{2})] =& \cos \alpha \cos (\beta + \frac{\pi }{2}) + \sin \alpha \sin (\beta + \frac{\pi }{2})\\ \sin (\alpha - \beta ) =& \sin \alpha \cos \beta - \cos \alpha \sin \beta \end{aligned} cos[α(β+2π)]=sin(αβ)=cosαcos(β+2π)+sinαsin(β+2π)sinαcosβcosαsinβ
同样可以推出其余六个

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值