层次分析APH

一、 模型背景

  20世纪70年代初,美国运筹学界出提出了一种全新的多目标综合评价方法——层次分析法。

  层次分析模型是一种系统性的、层次化的分析方法,该方法用个人的主观经验的判断各个因素对于目标的重要程度,并合理地给出每个决策方案的各因素的权数,利用权数将各方案进行排序,以确定最佳方案。对那些难以用定量方法解决的课题卓有成效,但该方法主观性较强。将半定性、半定量问题转化为定量问题的行之有效的一种方法。

##二、符号说明

符号说明
λ \lambda λ最大特征根
n成对比较矩阵的阶数
w最大特征根对应的特征向量(权向量)
CI一致性指标
RI随机一致性指标
CR一致性比率

三、模型原理

3.1模型思路

  层次分析法的基本思路将需要达成的目标层次化,将达成目标的因素进行分解,然后建立各因素之间重要程度关系的权重矩阵,从而得出各方案的优劣,选出最佳方案。

3.2层次分析模型步骤

  • 1 建立层次结构模型

      将决策的总目标定为最高层、考虑的因素(决策准则)为中间层和决策方案为最底层,再按照他们之间的相互关系分为目标层、准则层和关方案层依次排列,绘出层次结构图:在这里插入图片描述

    目标层: 决策的目标、要解决的问题

    准则层:决策时考虑的因素和准则

    方案层:完成目标层的预选方案

  • 2 构造判断矩阵

      层次分析法构造判断矩阵的方法被称为一致矩阵法,即:不把所有因素放在一起比较,而是两两相互比较;采用统一的比较尺度,以减少性质不同的因素相互比较的困难,来提高比较的可靠性。

    判断矩阵元素 a i j a_{ij} aij的标度方法:

    标度含义
    1表示两个因素相比,具有同样重要性
    3表示两个因素相比,一个因素比另一个因素稍微重要
    5表示两个因素相比,一个因素比另一个因素明显重要
    7表示两个因素相比,一个因素比另一个因素强烈重要
    9表示两个因素相比,一个因素比另一个因素极端重要
    2、4、6、8上述两相邻判断的中值
    倒数因素i与j比较的判断 a i j a_{ij} aij,则因素j与i比较的判断 1 a i j \frac{1}{a_{ij}} aij1

      按照此方法得到两两比较矩阵:

    (1)准则因素之间的比较矩阵

    A = ( a 11 ⋯ a 1 j a 21 ⋯ a 2 j ⋮ ⋱ ⋮ a i 1 ⋯ a i j ) A=\begin{pmatrix} a_{11} & \cdots & a_{1j}\\ a_{21} & \cdots & a_{2j}\\ \vdots & \ddots & \vdots\\ a_{i1} & \cdots & a_{ij} \end{pmatrix} A=a11a21ai1a1ja2jaij

    (2)方案比较矩阵:

    B 1 = ( a 11 ⋯ a 1 j a 21 ⋯ a 2 j ⋮ ⋱ ⋮ a i 1 ⋯ a i j ) B_{1}=\begin{pmatrix} a_{11} & \cdots & a_{1j}\\ a_{21} & \cdots & a_{2j}\\ \vdots & \ddots & \vdots\\ a_{i1} & \cdots & a_{ij} \end{pmatrix} B1=a11a21ai1a1ja2jaij B 2 = ( a 11 ⋯ a 1 j a 21 ⋯ a 2 j ⋮ ⋱ ⋮ a i 1 ⋯ a i j ) B_{2}=\begin{pmatrix} a_{11} & \cdots & a_{1j}\\ a_{21} & \cdots & a_{2j}\\ \vdots & \ddots & \vdots\\ a_{i1} & \cdots & a_{ij} \end{pmatrix} B2=a11a21ai1a1ja2jaij B 3 = ( a 11 ⋯ a 1 j a 21 ⋯ a 2 j ⋮ ⋱ ⋮ a i 1 ⋯ a i j ) B_{3}=\begin{pmatrix} a_{11} & \cdots & a_{1j}\\ a_{21} & \cdots & a_{2j}\\ \vdots & \ddots & \vdots\\ a_{i1} & \cdots & a_{ij} \end{pmatrix} B3=a11a21ai1a1ja2jaij

  • 3 计算层次单排序的权向量和一致性检验

      对于判断矩阵最大特征根 λ m a x \lambda _{max} λmax的特征向量,经过归一化后记为 W W W W W W的元素为同一层次元素对于上一层某因素的相对重要性的排序权值,这一过程称为层次单排序。

    (1)一致性检验

    C I = λ − n n − 1 CI=\frac{\lambda-n}{n-1} CI=n1λn

    CI一致性
    C I = 0 CI=0 CI=0有完全一致性
    C I CI CI接近于 0 0 0有满意的一致性
    C I CI CI越大不一致越严重

      为衡量比较结果是否能被接受,构造了最不一致的情况,几对不同的矩阵的n的比较矩阵,采取选用随机取数的方法,并对不同的n用100-500的子样本,计算其一致性指标,再求得其平均值,记为 R I RI RI

      参考随机一致性指标:

    n1234567891011
    RI000.580.901.121.241.321.411.451.491.51

      定义一致性比率:

    C R = C I R I CR=\frac{CI}{RI} CR=RICI

      一般认为,一致性比率 C I < 0.1 CI<0.1 CI<0.1时,认为矩阵的不一致程度在允许的范围内,通过一致性检验。可用其归一化特征向量作为权向量;否则不通过一致性检验需要重新对比较矩阵进行构造或调整。

    (2)权重向量计算

    特征根法:

      A是因素 C 1 , C 2 , ⋯   , C n C_{1},C_{2},\cdots,C_{n} C1,C2,,Cn对目标A的两两比较矩阵,如果A是一致矩阵,则A有唯一非零特征根 λ = n \lambda=n λ=n,则用特征根n对应的归一化特征向量w最为因素 C 1 , C 2 , ⋯   , C n C_{1},C_{2},\cdots,C_{n} C1,C2,,Cn对目标A的权重向量;如果A是不一致矩阵,但在不一致允许的范围内,Saaty提出用A的最大特征根 λ m a x \lambda_{max} λmax对应的归一化特征向量作为权重向量,即满足: A w = λ m a x w Aw=\lambda_{max}w Aw=λmaxw的特征向量w归一化后作为 C 1 , C 2 , ⋯   , C n C_{1},C_{2},\cdots,C_{n} C1,C2,,Cn对目标A的权重向量。

    和法:

    第一步:将矩阵A的每一列向量归一化 A ~ = ( a ~ i j ) n × n \widetilde{A}=(\widetilde{a}_{ij})_{n\times n} A =(a ij)n×n,其中 a ~ i j = a i j ∑ i = 1 n a i j \widetilde{a}_{ij}=\frac{a_{ij}}{\sum\limits_{i=1}^{n}a_{ij}} a ij=i=1naijaij

    第二步:对 A ~ \widetilde{A} A 按行求和得向量 w ~ = ( w ~ 1 , w ~ 2 , ⋯   , w ~ n ) T \widetilde{w}=(\widetilde{w}_{1},\widetilde{w}_{2},\cdots,\widetilde{w}_{n})^{T} w =(w 1,w 2,,w n)T,其中 w ~ i = ∑ j = 1 n a i j \widetilde{w}_{i}={\sum\limits_{j=1}^{n}a_{ij}} w i=j=1naij

    第三步:将 w ~ = ( w ~ 1 , w ~ 2 , ⋯   , w ~ n ) T \widetilde{w}=(\widetilde{w}_{1},\widetilde{w}_{2},\cdots,\widetilde{w}_{n})^{T} w =(w 1,w 2,,w n)T归一化得近似特征向量 w = ( w ~ 1 , w ~ 2 , ⋯   , w ~ n ) T w=(\widetilde{w}_{1},\widetilde{w}_{2},\cdots,\widetilde{w}_{n})^{T} w=(w 1,w 2,,w n)T即为权重向量。

    第四步:计算 λ = 1 n ∑ i = 1 n ( A w ) i w i \lambda=\frac{1}{n}\sum\limits_{i=1}^{n}\frac{(Aw)_{i}}{w_{i}} λ=n1i=1nwi(Aw)i得最大特征根的近似值,即 λ m a x = λ \lambda_{max}=\lambda λmax=λ.其中 ( A w ) i (Aw)_{i} (Aw)i表示 A w Aw Aw的第i个分量。

    根法:

    第一步:将矩阵A的每一列向量归一化 A ~ = ( a ~ i j ) n × n \widetilde{A}=(\widetilde{a}_{ij})_{n\times n} A =(a ij)n×n,其中 a ~ i j = a i j ∑ i = 1 n a i j \widetilde{a}_{ij}=\frac{a_{ij}}{\sum\limits_{i=1}^{n}a_{ij}} a ij=i=1naijaij

    第二步:对 A ~ \widetilde{A} A 按行求积,求其n次根,得向量 w ~ = ( w ~ 1 , w ~ 2 , ⋯   , w ~ n ) T \widetilde{w}=(\widetilde{w}_{1},\widetilde{w}_{2},\cdots,\widetilde{w}_{n})^{T} w =(w 1,w 2,,w n)T,其中 w ~ i = ( ∏ j = 1 n a i j ) 1 n \widetilde{w}_{i}=({\prod\limits_{j=1}^{n}a_{ij}})^{\frac{1}{n}} w i=(j=1naij)n1

    第三步:将 w ~ = ( w ~ 1 , w ~ 2 , ⋯   , w ~ n ) T \widetilde{w}=(\widetilde{w}_{1},\widetilde{w}_{2},\cdots,\widetilde{w}_{n})^{T} w =(w 1,w 2,,w n)T归一化得近似特征向量 w = ( w ~ 1 , w ~ 2 , ⋯   , w ~ n ) T w=(\widetilde{w}_{1},\widetilde{w}_{2},\cdots,\widetilde{w}_{n})^{T} w=(w 1,w 2,,w n)T即为权重向量。

    第四步:计算 λ = 1 n ∑ i = 1 n ( A w ) i w i \lambda=\frac{1}{n}\sum\limits_{i=1}^{n}\frac{(Aw)_{i}}{w_{i}} λ=n1i=1nwi(Aw)i得最大特征根的近似值,即 λ m a x = λ \lambda_{max}=\lambda λmax=λ.其中 ( A w ) i (Aw)_{i} (Aw)i表示 A w Aw Aw的第i个分量。

  • 4 计算层次总排序权值和一致性检验

      计算某一层次所有因素对于最高层(总目标)相对重要性的权值,称为层次总排序。这一过程是从最高层次到最低层次依次进行的。

    总排序的权值计算方法为:

      准则层对目标层的权重 w ( a 1 , a 2 , ⋯   , a n ) w(a_{1},a_{2},\cdots,a_{n}) w(a1,a2,,an)

      方案层对准则层的权重 w ( b 1 , b 2 , ⋯   , b n ) w(b_{1},b_{2},\cdots,b_{n}) w(b1,b2,,bn)

      总层次排序(方案层第i个因素对总目标的权值为: ∑ j = 1 m a j b i j \sum\limits_{j=1}^{m}a_{j}b_{ij} j=1majbij

    即: P 1 : a 1 b 11 + a 2 b 12 + ⋯ + a m b 1 m P_{1}:a_{1}b_{11}+a_{2}b_{12}+\cdots+a_{m}b_{1m} P1:a1b11+a2b12++amb1m

    P 2 : a 1 b 21 + a 2 b 22 + ⋯ + a m b 2 m P_{2}:a_{1}b_{21}+a_{2}b_{22}+\cdots+a_{m}b_{2m} P2:a1b21+a2b22++amb2m

    ⋯ \cdots

    P n : a 1 b n 1 + a 2 b n 2 + ⋯ + a m b n m P_{n}:a_{1}b_{n1}+a_{2}b_{n2}+\cdots+a_{m}b_{nm} Pn:a1bn1+a2bn2++ambnm

    总排序的一致性比率:

    C R = a 1 C I 1 + a 2 C I 2 + ⋯ + a m C I m a 1 R I 1 + a 2 R I 2 + ⋯ + a m R I m CR=\frac{a_{1}CI_{1}+a_{2}CI_{2}+\cdots+a_{m}CI_{m}}{a_{1}RI_{1}+a_{2}RI_{2}+\cdots+a_{m}RI_{m}} CR=a1RI1+a2RI2++amRIma1CI1+a2CI2++amCIm

      当CR<0.1时认为层次总排序通过一致性检验。

       a a a为准则层A对目标层Z的权重;

       C I k CI_{k} CIk为B层对A层的一致性指标;

       R I k RI_{k} RIk为随机一致性指标;

四、模型代码

五、模型优缺点

优点

  1. 分析具有系统性、简洁性

      层次分析法将主观的判断系统化、合理化。将总目标分解为多个层次逐步分析,使定性和定量二者有机的结合,每个层次中的每个因素都被量化成对结果的影响权重。使原本无结构的评价系统变得清晰、明了,使个人的主观判断变得更系统。类似于将复杂问题分解简单化,再对每一给简单的步骤做出判断。

  2. 需要的数据信息较少

  层次分析把重要的决策中重要的步骤留给了大脑来判断,模型中不需要太多的数据提供支撑,大部分数据均来自个人的主观判断,从而模型得到的结果往往最能符合决策个人的主观意愿。

缺点:

  1. 无法提出新方案

  层次分析模型只是在原有的方案中做出抉择,找出原有方案中最理想的方案,但是在实际问题中,最佳方案往往并不是在已经提出的方案中,所以该模型存在局限性。

  1. 定量数据使用较少,主观定性成分多,结果不能使人信服

  数据支撑性不强,模型在很大程度上依赖于决策者的主观意愿。不同的决策者可能得到的决策方案不尽相同,所以结论往缺乏说服性。

  1. 指标过多时数据统计量大,且权重难以确定

  当问题的影响因素较多,决策方案较多时,会使模型的结构变得复杂,模型层次更深。从而增加求解难度。在低阶矩阵的时候,求解权重矩阵相对简便,但随着模型层次加深较多,决策方案的加多,模型也随之升阶,在计算上的复杂度也逐步显现。

  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值