1 基本介绍
层次分析法(analytic hierarchy process,简称AHP)是解决多因素综合评价问题的常用方法,该方法是美国运筹学家,匹茨堡大学教授T.L. Saaty于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
该方法的特点是:
(1)把整个综合评价问题看作一个系统,用系统工程的方法进行决策和判断;
(2)合理解和定性与定量决策,把决策过程层次化、数量化;
(3)把决策者个人偏好引入比较评判过程,符合实际决策过程中的个人习惯思维和心理变化规律;
(4)引入指标重要性比较尺度,通过建立比较矩阵和权重向量解决决策方案的排序问题。
2 建立步骤
2.1 建立递阶式层次结构模型
可分为:目标层、准则层、方案层
2.2 构造比较判断矩阵
为每一层每一级的评价体系构造比较判断矩阵。采用1~9及其倒数的标度方法定义,当两两比较完成后,得到比较判断矩阵,其中,因此判断矩阵又称为正互反矩阵。
这里用了一种比较讨巧的方式(例如: 比
重要性绝对强,取值为Cij=9的时候,Cji=1/9)
表1 1-9标度值及其含义这个表很重要,是做问卷调查时被访者赋值的依据。
标度 含义
1 与
一样重要
3 比
重要性稍强
5 比
重要性强
7 比
重要性明显强
9 比
重要性绝对强
2,4,6,8 比
重要性介于相邻数之间
比
重要性之比为上面
的相反数,其含义与之相反
2.3 层次单排序及一致性检验
(1)确定相对权重向量
为了对指标排序,需要确定每个指标的相对权重向量。确定相对权重向量的常见方法有和法、根法、特征根法等。
①和法:将比较判断矩阵按列归一化,得到归一化的标准矩阵,然后将标准化矩阵按行求算术平均值即得到权重向量,计算公式如下:
eg:设判断矩阵为,经列归一化后得到矩阵,求的行算术平均值得到 权重向量
注意:这里的归一法是指:例如:0.2000=1/(1+2+2);0.1429=1/2/(1/2+1+2);0.2500=1/2/(1/2+1/2+1)。最后,得到权重0.1976=(0.2000+0.1429+0.2500)/3
②根法:将比较判断矩阵按列归一化,得到归一化的标准矩阵,然后将标准化矩阵按行求几何平均后归一化即得到权重向量,计算公式如下:
eg:设判断矩阵为,经列归一化后得到矩阵
,求
的行几何平均值得到初步权重向量
,再归一化后得到最终权重向量
(2)计算特征根和特征向量
排序问题最终归结为计算判断矩阵的特征根和特征向量问题,可运用相关软件计算得到任意精度的最大特征根及其对应的特征向量。假设判断矩阵,通过归一化处理等系列变化过程,可以得到特征向量及其最大特征根(可用计算机实现)
(3)一致性检验
由于系统的复杂性、 认识的多样性以及主观片面性和不稳定性, 要达到完全一致性判断是非常困难的。为了确保层次排序的有效性,必须对给出的判断矩阵进行一致性检验。
其中,一致性检验通常使用一致性比率作为检验标准,当CR<0.1时, 认为判断矩阵的一致性是可以接受的;当CR>=0.1时,应考虑对判断矩阵进行调整,再重新计算权重向量并进行一致性检验,直至检验通过。这里有:
其中,CI为一致性指标,,越大,说明不一致越严重;
为平均随机一致性指标,与判断矩阵的阶数n有关,可查表得到。它是利用计算机模拟得到大量的比较判断矩阵,计算相应的,并把多次模拟结果取平均得到的。
表2 平均随机一致性指标
矩阵阶数n 1 2 3 4 5 6 7 8 9 10 11 ...
RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 ...
2.4 层次总排序及其一致性检验
完整内容见下属链接,该方法对于实现教育科学规划课题很重要!
版权声明:本文为CSDN博主「禾木页」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_42281663/article/details/123399145