平面分割,空间分割各种变形问题

一、直线分割的变形问题

1、直线分割的区域分为有界和无界的区域,那么 n n n条直线最多将平面分为多少个有界的区域?

解决分割问题的一个很有用的思想为就是动态分析,观察总结。 那么我们可以假设第 n n n条直线交于 k > 0 k>0 k>0个不同的点,那么观察就可以得到一个结论,那就是我们可以得到新的 k − 1 k-1 k1个有界的区域和 2 2 2个无界的区域。因此,最多的有界区域与最多区域解 L n L_n Ln的差为 2 ∗ n 2*n 2n,所有可以得到:

T n = S n − 2 = L n − 2 ∗ n = ( n − 1 ) ( n − 2 ) 2 = ∑ i = 1 n − 2 i T_n=S_{n-2}=L_n-2*n=\dfrac{(n-1)(n-2)}{2}=\sum_{i=1}^{n-2}i Tn=Sn2=Ln2n=2(n1)(n2)=i=1n2i

其中的 S n S_n Sn是三角形数, S n = n ( n + 1 ) 2 S_n=\dfrac{n(n+1)}{2} Sn=2n(n+1)。下图中,蓝色线为第 4 4 4条线,生成 2 2 2个红色的有界区域和 2 2 2个黄色的无界区域。

在这里插入图片描述


2、折线分割问题,这次不是直线去分割平面了,是折线,那么 n n n条折线最多可以将平面分割为多少个区域呢?

动态分析:如何才能最多的分割平面?就是产生尽量多的交点。观察总结:对于折线来说,加入一条折线后,区域的增加个数相当于两条直线加入分割后减少少了 2 2 2个区域。什么意思呢?当 n = 1 n=1 n=1的时候,区域数为 2 2 2,若是两条直线相交那么可以产生的区域数为 4 4 4,原因就是折线的形状不能将左边那个大的蓝色 2 2 2区域分割。同样的,每加入一条折线都会少两个区域,所以可以得到:

在这里插入图片描述
在这里插入图片描述
T n = L 2 n − 2 n = 2 n 2 − n + 1 T_n=L_{2n}-2n=2n^2-n+1 Tn=L2n2n=2n2n+1

L n L_n Ln就是经典 n n n条直线分割最多平面问题的解,满足 L n = 1 + S n = 1 + n ( n + 1 ) 2 L_n=1+S_n=1+\dfrac{n(n+1)}{2} Ln=1+Sn=1+2n(n+1)

其实有一个经验总结,就是区域增加的个数和交点的个数总是密切相关的,并且所有的区域的个数和直线的条数,交点数也是息息相关。这对于那些要求平行线的交点分割的变形题目非常有帮助。具体关系就是:

经验 1 1 1 区域增加的个数=新产生的交点个数+1
经验 2 2 2 区域的个数=1+线的条数+交点的个数(这里如果是 n n n线汇合一点,那么交点个数计算为 n − 1 n-1 n1个,并且对于无穷延伸的线条来说,不论是直线好,还是折线也好,都算作一条线)

那么回头再看看刚才的题目,很容易得到,对于第 n n n条折线来说,一次最多可以新产生 4 ( n − 1 ) 4(n-1) 4(n1)个交点,所以最多可以产生新的区域数 4 ( n − 1 ) + 1 4(n-1)+1 4(n1)+1,就是 4 n − 3 4n-3 4n3个,那么就可以得到递推式子:

T n = T n − 1 + 4 n − 3 T_n=T_{n-1}+4n-3 Tn=Tn1+4n3

结果是一样的。同样我们可以采用思路 2 2 2去解决,直接计算区域的总数:

T n = 1 + n + 4 ∗ ∑ i = 1 n − 1 i = 2 n 2 − n + 1 T_n=1+n+4*\sum_{i=1}^{n-1}i=2n^2-n+1 Tn=1+n+4i=1n1i=2n2n+1


3、折线?换成"Z"型线条怎么计算?

我们可以只用充分长的线段的极狭窄的 Z Z Z形线来构造最多的交点的情况,也就是当第 n n n条线加入时,它与其余的 n − 1 n-1 n1条线都有 9 9 9个交点,那么我们根据经验 1 1 1或者 2 2 2来解决。

在这里插入图片描述

使用经验 1 1 1的话,那么我们就可以得到对于第 n n n条线来说,最多可以产生 9 ( n − 1 ) 9(n-1) 9(n1)个交点,那么产生的区域最多为 9 ( n − 1 ) + 1 9(n-1)+1 9(n1)+1,所以可以得到最优解为:

T n = T n − 1 + 9 n − 8 T_n=T_{n-1}+9n-8 Tn=Tn1+9n8

T n = 9 2 n 2 − 7 2 n + 1 T_n=\dfrac{9}{2}n^2-\dfrac{7}{2}n+1 Tn=29n227n+1

使用经验 2 2 2的话,那么我们就可以得到对于第 n n n条线来说,最多可以产生 9 ( n − 1 ) 9(n-1) 9(n1)个交点,那么区域的最多的交点数为 9 ∑ i = 1 n − 1 i 9\sum _{i=1}^{n-1}i 9i=1n1i

注意这里的 Z Z Z形线都只是一条线,所以可以得到最优解为:

T n = 1 + n + 9 ∑ i = 1 n − 1 i T_n=1+n+9\sum _{i=1}^{n-1}i Tn=1+n+9i=1n1i

T n = 9 2 n 2 − 7 2 n + 1 T_n=\dfrac{9}{2}n^2-\dfrac{7}{2}n+1 Tn=29n227n+1

可见,两个方法殊途同归,本质都是一样的,经验 2 2 2其实就是经验 1 1 1的叠加形式。


二、封闭曲线分割平面的问题:

直接上干货,因为这个问题的水非常深,所以在这里直接使用经验而不是严谨的推理,如果对原理很有兴趣,就自己去看论文吧。有这个时间,不去玩玩,逛逛GitHub之类的

经验总结:对于 k k k个新的交点产生,会增加 k − 1 k-1 k1个有界的区域,和 2 2 2个无界的区域,这在直线分割平面的变形第一题就已经说过了。那么由于是封闭的曲线产生的区域,是有界限的,所以新产生的区域=新产生的交点产生的有界区域和。

1、三角形分割问题:

在这里插入图片描述

对于三角形来说,对于第 n n n个三角形,一次最多可以产生的新的交点数为 6 ( n − 1 ) 6(n-1) 6(n1),所以新的产生的区域数为 6 ( n − 1 ) 6(n-1) 6(n1)

T n = T n − 1 + 6 ( n − 1 ) , T 1 = 2 T_n=T_{n-1}+6(n-1),T_1=2 Tn=Tn1+6(n1),T1=2

T n = 3 n 2 − 3 n + 2 T_n=3n^2-3n+2 Tn=3n23n+2


2、圆形分割问题:

在这里插入图片描述

对于圆来说,对于第 n n n个圆,一次最多可以产生的新的交点数为 2 ( n − 1 ) 2(n-1) 2(n1),原因就是因为两个圆最多有两个交点,所以新的产生的区域数为 2 ( n − 1 ) 2(n-1) 2(n1)

T n = T n − 1 + 2 ( n − 1 ) , T 1 = 2 T_n=T_{n-1}+2(n-1),T_1=2 Tn=Tn1+2(n1),T1=2

T n = n 2 − n + 2 T_n=n^2-n+2 Tn=n2n+2


3、椭圆分割问题:

在这里插入图片描述
对于椭圆来说,对于第 n n n个椭圆,一次最多可以产生的新的交点数为 4 ( n − 1 ) 4(n-1) 4(n1),原因就是因为两个椭圆最多有四个交点,所以新的产生的区域数为 4 ( n − 1 ) 4(n-1) 4(n1)

T n = T n − 1 + 4 ( n − 1 ) , T 1 = 2 T_n=T_{n-1}+4(n-1),T_1=2 Tn=Tn1+4(n1),T1=2

T n = 2 n 2 − 2 n + 2 T_n=2n^2-2n+2 Tn=2n22n+2


三角形,两个三角形最大交点数: 6 6 6 T n = 3 n 2 − 3 n + 2 T_n=3n^2-3n+2 Tn=3n23n+2
圆形,两个圆形最大交点数: 2 2 2 T n = n 2 − n + 2 T_n=n^2-n+2 Tn=n2n+2
椭圆形,两个椭圆形最大交点数: 4 4 4 T n = 2 n 2 − 2 n + 2 T_n=2n^2-2n+2 Tn=2n22n+2
因此,我们可以大胆猜测:封闭二次型曲线,两条曲线的最大交点数: m m m T n = k n 2 − k n + 2 , k = m 2 T_n=kn^2-kn+2, k=\dfrac{m}{2} Tn=kn2kn+2,k=2m
多么优美的公式!


三、多维切割问题:

这个问题的难度很大,我只讲讲最基础的平面切割三维空间的问题,其他的多维的我只例举一些有用的公式就好了。

1、 n n n个平面切割一个空间,最多可以得到多少个不同的空间?

为了要有最多的空间数,则第 n n n个平面需与前 n − 1 n-1 n1个平面相交,且不能有共同的交线。所以最多有 n − 1 n-1 n1 条交线。而这些交线把第 n n n个平面最多分割成多少个区域呢?

显然,这最多可以分出 L n − 1 L_{n-1} Ln1个区域,这个平面将原来的空间一分为二,所以只会一部分空间被区域分割,总的增加 L n − 1 L_{n-1} Ln1个空间:

T n = T n − 1 + L n − 1 T_n=T_{n-1}+L_{n-1} Tn=Tn1+Ln1

2、 n n n d − 1 d-1 d1维度的物体切割一个 d d d维度的物体,最多可以得到多少份?

根据递归的思想,我们可以得到该问题的解:

T d ( n ) = T d ( n − 1 ) + T d − 1 ( n − 1 ) T_d(n)=T_d(n-1)+T_{d-1}(n-1) Td(n)=Td(n1)+Td1(n1)

T d ( n ) = ∑ k = 0 d ( n k ) T_d(n)=\sum_{k=0}^d \binom{n}{k} Td(n)=k=0d(kn)

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值