前言
昨日爆零,具体入日记,今日按日程进行。
MATH
题目大意:给定一n,要求找出所有正整数(x,y)满足的个数。(n:1e18,
解:关键在无穷递降法是否理解,接下来利用韦达定理建立转移关系,遍历打表即可得到答案。
详解:因为是整除,注意是后面的除前面的,因此可以表示为:
很容易发现:这是一个关于y=x (2)对称的函数,并且下界为0,而为了求出上界,我们可以先假设,固定x,利用韦达定理得到界限,因此:
可见,通过3式知:y=kx-y',也就是说如果知道一个解,可以获得另一个对应的解,而又2式知:xy互换后可得到另一个解,他的对应解一定在范围内,那么也就是说:一个x可以唯一对应u个解,m个x即可对应mu个解,也就是从某个值递升。这当然不严谨,想要得到严谨的结论,需要反方向考虑,也就是递降,从y开始运算,递降,我们可以轻易的知道:在这种情况下为最小情况,也即特解。
因此反代入原公式,得到特解点为也即上界为,这样证明了多个可行点确实是唯一来自这个特定点,并且所有可行点都可以用一个特定点来表示。
接下来对每个点进行还原,计数,最后进行搜索即可。