Autoformer 的分解架构

为了应对长期未来复杂的时间模式,我们提出了Autoformer作为一种分解架构,并设计了内部分解模块,以赋予深度预测模型内在的逐步分解能力。

Autoformer 的分解架构

Autoformer 的核心思想是通过将复杂的时间序列分解成更容易处理的趋势和残差成分,从而提高预测的准确性和效率。以下是Autoformer 的分解架构及其实现步骤:

  1. 输入处理

    • 将输入的时间序列数据通过编码器进行处理,生成隐藏变量表示。
  2. 内部分解模块

    • 趋势提取器:使用移动平均或其他平滑技术,从隐藏变量中提取长期趋势成分。
    • 残差提取器:从隐藏变量中提取短期波动和噪声。
  3. 逐步分解和精细化

    • 初始预测:利用编码器-解码器结构对隐藏变量进行初步预测,得到初步的未来时间序列预测结果。
    • 分解趋势和残差:使用分解模块将初步预测结果分解为趋势和残差。
    • 精细化处理:通过自相关机制和解码器对残差部分进行进一步预测和修正,提高预测精度。
  4. 自相关机制(Auto-Correlation Mechanism)

    • 基于时间序列的周期性发现子序列的相似性。
    • 利用这些相似性,对不同周期的相似子序列进行聚合,提高信息利用率,降低计算复杂度。

具体数据示例

假设我们有一个每日电力消耗数据集,包含过去一年(365天)的数据。我们的目标是预测未来一个月(30天)的电力消耗。

输入数据

电力消耗 = [ 100 , 105 , 102 , 110 , 108 , 107 , 112 , . . . , 115 , 120 , 118 ] \text{电力消耗} = [100, 105, 102, 110, 108, 107, 112, ..., 115, 120, 118] 电力消耗=[100,105,102,110,108,107,112,...,115,120,118]

具体步骤
  1. 输入处理

    • 输入的时间序列数据通过编码器处理,生成隐藏变量表示。
  2. 内部分解模块

    • 趋势提取器:应用移动平均法,窗口大小为7天,提取每周的平均电力消耗。
      趋势成分 = [ 105 , 106 , 107 , 108 , 109 , 110 , 111 , . . . , 118 , 119 , 120 ] \text{趋势成分} = [105, 106, 107, 108, 109, 110, 111, ..., 118, 119, 120] 趋势成分=[105,106,107,108,109,110,111,...,118,119,120]
    • 残差提取器:从隐藏变量中减去趋势成分,得到残差。
      残差成分 = [ − 5 , − 1 , − 5 , 2 , − 1 , − 3 , 1 , . . . , − 3 , 1 , − 2 ] \text{残差成分} = [-5, -1, -5, 2, -1, -3, 1, ..., -3, 1, -2] 残差成分=[5,1,5,2,1,3,1,...,3,1,2]
  3. 逐步分解和精细化

    • 初始预测:利用解码器对隐藏变量进行初步预测,得到未来30天的电力消耗预测。
      初步预测 = [ 121 , 123 , 125 , . . . , 150 ] \text{初步预测} = [121, 123, 125, ..., 150] 初步预测=[121,123,125,...,150]
    • 分解趋势和残差:使用分解模块,将初步预测结果分解为趋势和残差。
      未来趋势 = [ 122 , 124 , 126 , . . . , 148 ] \text{未来趋势} = [122, 124, 126, ..., 148] 未来趋势=[122,124,126,...,148]
      未来残差 = [ − 1 , − 1 , − 1 , . . . , 2 ] \text{未来残差} = [-1, -1, -1, ..., 2] 未来残差=[1,1,1,...,2]
    • 精细化处理:对未来残差进行进一步预测和修正,得到精细化的预测结果。
      精细化预测 = [ 121 , 123 , 125 , . . . , 150 ] \text{精细化预测} = [121, 123, 125, ..., 150] 精细化预测=[121,123,125,...,150]
  4. 自相关机制

    • 基于时间序列的周期性发现子序列的相似性,并进行聚合,提高预测的准确性和效率。

总结

通过设计内部分解模块,Autoformer能够逐步从隐藏变量中分离出长期趋势信息,增强了深度预测模型的预测能力。自相关机制进一步提高了信息利用效率,使得Autoformer在处理复杂时间模式时具有显著优势。

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值