informer详细流程
文章平均质量分 90
six.学长
爱科研的小逯
展开
-
informer全流程
这个图展示了 Informer 网络的具体组件和细节。我们将分成编码器(Encoder)、蒸馏模块(Distilling)、解码器(Decoder)和最终输出(Final)四个部分来解释。输入(Inputs)概率稀疏自注意力块(ProbSparse Self-attention Block)输入(Inputs)带掩码的概率稀疏自注意力块(Masked ProbSparse Self-attention Block)假设输入数据为一个长度为 N=10N = 10N=10 的时间序列,每个时间步长包含 5 个特原创 2024-06-24 18:56:47 · 1206 阅读 · 0 评论 -
informer之解码器的输入过程详细解释
通过1x3 Conv1d层和嵌入层,解码器的输入特征被进一步提取和转换为高维度的向量表示,这些表示更适合后续的注意力机制和解码器中的处理步骤。这个过程通过局部卷积和高维嵌入来增强输入特征的表示能力,从而使模型能够更好地捕捉和利用序列中的模式和依赖关系。首先,解码器接收来自编码器的输出特征,通常这些特征已经过卷积、注意力机制和蒸馏等处理,具有较高的特征表示能力。解码器的任务是将这些高层次的特征转换为目标输出。解码器的输入过程与编码器有一些相似之处,但也有其特定的特点和处理步骤。原创 2024-06-19 10:58:18 · 651 阅读 · 0 评论 -
编码器的蒸馏(Distilling)详细解释
蒸馏(Distilling)步骤是在稀疏注意力块之后,用于进一步压缩和提炼特征表示。这个步骤的主要目的是减少序列长度,使得模型能够更有效地处理长时间序列数据,同时保持重要的特征信息。原创 2024-06-19 10:13:45 · 961 阅读 · 0 评论 -
编码器的稀疏注意力块(ProbSparse Self-Attention Block)
稀疏注意力块是Informer模型的核心组件之一,旨在高效处理长时间序列数据。它通过稀疏自注意力机制(ProbSparse Self-Attention)显著降低计算复杂度,同时保持较高的性能。原创 2024-06-19 10:08:10 · 1338 阅读 · 0 评论 -
编码器输入的详细过程(文章最后有位置编码加入)
通过1x3 Conv1d层和嵌入层,输入的原始时间序列数据被转换成高维度的特征表示,这些表示更适合后续的注意力机制和编码器中的处理步骤。这个过程通过局部卷积和高维嵌入来增强输入数据的特征表示能力,从而使模型能够更好地捕捉和利用时间序列中的模式和依赖关系。首先,输入数据是一个时间序列数据。例如,假设我们要处理的是每日销售量的数据,输入数据可以表示为一个包含时间和销售量的序列。原创 2024-06-19 09:48:52 · 781 阅读 · 0 评论