Transformer
文章平均质量分 86
six.学长
爱科研的小逯
展开
-
MLP是多层感知机(Multi-Layer Perceptron)
在Transformer模型中,MLP块用于在自注意力机制之后进一步处理信息。它通过两个线性变换和一个非线性激活函数实现对输入向量的非线性变换和处理,从而增强模型的表达能力。通过这种结构,Transformer能够在捕捉序列中不同位置之间的依赖关系的同时,有效处理和表示复杂的输入数据。原创 2024-07-14 08:31:36 · 1286 阅读 · 0 评论 -
标签平滑(Label Smoothing)
标签平滑通过将目标标签从 one-hot 编码转换为软标签,提高了模型的泛化能力。虽然这会使模型在训练时表现出更高的困惑度,但实际测试中模型的准确性和 BLEU 分数通常会有所提高。通过具体的实现步骤和代码示例,我们可以清楚地理解标签平滑的工作原理及其对模型性能的影响。原创 2024-06-30 15:11:05 · 620 阅读 · 0 评论 -
注意力机制中的缩放问题及其解决方法
加性注意力:通过前馈神经网络计算相似度。eijv⊤tanhWqQiWkKjeijv⊤tanhWqQiWkKj点积注意力:通过查询和键的点积计算相似度。原创 2024-06-28 10:18:23 · 1004 阅读 · 0 评论 -
注意力机制的两种常用形式-----加性注意力(Additive Attention)和点积注意力(Dot-product Attention)
注意力机制是现代自然语言处理模型(如Transformer)的核心组件。最常用的两种注意力机制是加性注意力(Additive Attention)和点积注意力(Dot-product Attention)。加性注意力和点积注意力在理论复杂度上相似,但点积注意力更快且更节省空间,因为它可以利用高度优化的矩阵乘法代码。通过具体数据示例,我们可以看到这两种注意力机制的工作原理和实际计算过程。:利用注意力权重对值(value):通过计算点积并除以缩放因子。类似地,计算其他相似度。类似地,计算其他相似度。原创 2024-06-28 10:04:52 · 1269 阅读 · 0 评论 -
注意力机制的详细解释
通过详细解释和具体示例,我们展示了缩放点积注意力机制和多头注意力机制的工作原理。注意力机制通过查询与键的相似度计算注意力权重,并使用这些权重对值进行加权求和,从而捕捉输入数据中的重要信息。多头注意力机制通过并行计算多个注意力头,增强了模型捕捉不同子空间信息的能力,使得Transformer模型能够更好地处理复杂的序列数据。原创 2024-06-27 16:05:55 · 878 阅读 · 0 评论 -
在Transformer模型中解码器(Decoder)的详细解释(Attention Is All You Need)
通过详细解释解码器的结构和每个子层的工作原理,我们可以看到解码器如何利用掩码多头自注意力机制、对编码器输出的多头注意力机制和逐点全连接前馈神经网络来生成输出序列。每个子层都使用残差连接和层归一化,以确保模型的稳定性和训练效果。这些步骤使得解码器能够在生成每个符号时,只依赖于之前生成的符号,同时参考编码器的输出,从而实现高效的序列生成。原创 2024-06-27 15:41:09 · 1530 阅读 · 0 评论 -
在Transformer模型中编码器(Encoder)的详细解释(Attention Is All You Need论文)
这就是编码器中的一个层的完整处理过程。通过堆叠6个这样的层,编码器能够捕捉输入序列中的复杂依赖关系,并生成高维的表示,供解码器使用。多头自注意力机制允许模型在每个位置上都能关注到输入序列中的其他位置,从而捕捉到序列中的全局依赖关系。每个子层都使用残差连接,并在其后进行层归一化。这种设计确保了模型能够保持稳定的梯度,并能有效地进行训练。是子层实现的函数,比如自注意力机制或前馈神经网络。在Transformer模型中,编码器由堆叠的。原创 2024-06-27 15:32:56 · 937 阅读 · 0 评论 -
Attention Is All You Need-----transformer架构超详细长篇解释
Transformer模型的架构通过堆叠多个自注意力机制和前馈神经网络层,实现了强大的序列建模能力。编码器和解码器分别处理输入和输出序列,掩码机制保证了自回归生成的顺序性,多头注意力机制增强了捕捉不同依赖关系的能力。这个设计使得Transformer在许多自然语言处理任务中表现出色。原创 2024-06-27 15:27:27 · 1093 阅读 · 0 评论 -
详细解释Transformer模型中的前向传播和反向传播过程
通过详细解释前向传播和反向传播过程,我们可以看到Transformer模型如何通过各个层处理输入数据,并通过反向传播更新模型的参数。前向传播包括输入嵌入、位置编码、多头自注意力机制、前馈神经网络、残差连接和层归一化。反向传播则通过链式法则计算每一层的梯度,并更新模型的参数,以最小化损失函数。这些步骤确保了模型能够高效地处理和学习复杂的时间序列数据。原创 2024-06-27 15:22:32 · 1827 阅读 · 0 评论 -
端到端记忆网络(End-to-End Memory Networks)
端到端记忆网络通过引入外部记忆组件和递归注意力机制,能够动态地存储和检索信息,特别适用于需要处理复杂上下文和长距离依赖关系的任务。这种架构在简单语言问答和语言建模任务中表现出色,因为它能够有效地访问和利用存储的信息,从而提高理解和生成能力。原创 2024-06-27 14:36:59 · 778 阅读 · 0 评论 -
在Transformer模型中d_k是如何确定的
在多头注意力机制中,确定了每个头的维度dkd_kdk和dvd_vdv后,权重矩阵WQW_QWQWKW_KWK和WVW_VWVWQ∈R512×64WK∈R512×64WV∈R512×64WQ∈R512×64WK∈R512×64WV∈R512×64。原创 2024-06-23 09:34:36 · 968 阅读 · 0 评论 -
多头注意力最后每个头生成的矩阵是拼在一起吗
多头注意力机制中的每个头生成的注意力输出矩阵是拼接在一起的,然后通过一个线性变换生成最终的输出。这种机制允许模型在多个子空间中并行计算注意力,从而捕捉到更丰富和多样的特征,提高模型的表示能力和性能。原创 2024-06-21 09:58:15 · 769 阅读 · 0 评论 -
点积时数值过大为什么会导致梯度消失
点积数值过大导致激活函数饱和,进而导致梯度消失问题。这在深层神经网络中特别明显。通过选择合适的激活函数、合理的权重初始化和使用归一化技术,可以有效缓解梯度消失问题,从而确保神经网络的训练过程顺利进行。原创 2024-06-17 16:09:38 · 356 阅读 · 0 评论 -
线性变换和非线性变换的作用
线性变换是一种数学操作,将输入向量通过线性函数映射到另一个向量空间。在线性变换中,输出是输入的线性组合,其一般形式为:其中,( W ) 是权重矩阵,( x ) 是输入向量,( b ) 是偏置向量,( y ) 是输出向量。非线性变换是指将线性变换后的输出通过非线性激活函数进行处理,激活函数是非线性的,使得输出不再是输入的简单线性组合。常见的激活函数包括 ReLU、sigmoid 和 tanh 等。线性变换和非线性变换在神经网络中各自发挥着重要的作用。原创 2024-06-17 15:58:34 · 518 阅读 · 0 评论 -
前馈神经网络(Feedforward Neural Network, FNN)(小白可入)
前馈神经网络(Feedforward Neural Network, FNN)原创 2024-06-13 18:41:07 · 975 阅读 · 0 评论