多头注意力最后每个头生成的矩阵是拼在一起吗

多头注意力机制(Multi-Head Attention)中的每个头生成的矩阵通常会在最后拼接(concatenate)在一起,然后再通过一个线性变换来生成最终的输出。这是多头注意力机制的核心操作之一,允许模型从不同的子空间中提取和聚合信息。以下是详细解释:

多头注意力机制工作原理

  1. 输入嵌入向量分解

    • 给定输入嵌入向量 X X X(维度为 seq_len × d model \text{seq\_len} \times d_{\text{model}} seq_len×dmodel,其中 seq_len \text{seq\_len} seq_len是序列长度, d model d_{\text{model}} dmodel是嵌入向量维度)。
    • 这些输入嵌入向量会被投影到不同的子空间。假设有 h h h个头,每个头的维度为 d k d_k dk,通常 d k = d model h d_k = \frac{d_{\text{model}}}{h} dk=hdmodel
  2. 线性变换和注意力计算

    • 对每个头 i i i,应用不同的线性变换得到查询(query)、键(key)和值(value)矩阵:
      $
      Q_i = XW_i^Q, \quad K_i = XW_i^K, \quad V_i = XW_i^V
      $
      其中, W i Q W_i^Q WiQ W i K W_i^K WiK W i V W_i^V WiV是头 i i i的线性变换矩阵。

    • 计算注意力分数并生成注意力输出:
      Attention i = softmax ( Q i K i T d k ) V i \text{Attention}_i = \text{softmax}\left(\frac{Q_i K_i^T}{\sqrt{d_k}}\right) V_i Attentioni=softmax(dk QiKiT)Vi

  3. 拼接和线性变换

    • 将所有头的注意力输出拼接在一起,形成一个大的矩阵:
      Concat ( Attention 1 , Attention 2 , … , Attention h ) \text{Concat}(\text{Attention}_1, \text{Attention}_2, \ldots, \text{Attention}_h) Concat(Attention1,Attention2,,Attentionh)
      这个拼接后的矩阵维度为 seq_len × ( h × d k ) \text{seq\_len} \times (h \times d_k) seq_len×(h×dk)

    • 通过一个线性变换将拼接后的矩阵映射回 d model d_{\text{model}} dmodel维度的向量空间:
      MultiHead ( Q , K , V ) = Concat ( Attention 1 , Attention 2 , … , Attention h ) W O \text{MultiHead}(Q, K, V) = \text{Concat}(\text{Attention}_1, \text{Attention}_2, \ldots, \text{Attention}_h) W^O MultiHead(Q,K,V)=Concat(Attention1,Attention2,,Attentionh)WO
      其中, W O W^O WO是用于将拼接后的矩阵转换回原始维度的线性变换矩阵。

多头注意力机制的作用

多头注意力机制允许模型在不同的子空间中并行计算注意力,从而捕捉到输入序列中不同的特征和关系。通过拼接每个头的注意力输出并进行线性变换,模型可以综合来自不同注意力头的信息,生成更加丰富和全面的表示。

具体示例

假设我们有一个输入嵌入矩阵 X X X

X = [ x 1 x 2 ⋮ x seq_len ] X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{\text{seq\_len}} \end{bmatrix} X= x1x2xseq_len

每个 x i x_i xi是一个 d model d_{\text{model}} dmodel维度的向量。如果我们有 8 个注意力头,每个头的维度是 d k = d model 8 d_k = \frac{d_{\text{model}}}{8} dk=8dmodel,则具体步骤如下:

  1. 线性变换
    • 对每个头 i i i,计算 Q i , K i , V i Q_i, K_i, V_i Qi,Ki,Vi
  2. 注意力计算
    • 计算每个头的注意力输出 Attention i \text{Attention}_i Attentioni
  3. 拼接
    • 拼接所有头的注意力输出:
      Concat ( Attention 1 , Attention 2 , … , Attention 8 ) \text{Concat}(\text{Attention}_1, \text{Attention}_2, \ldots, \text{Attention}_8) Concat(Attention1,Attention2,,Attention8)
      得到一个 seq_len × ( 8 × d k ) \text{seq\_len} \times (8 \times d_k) seq_len×(8×dk)的矩阵。
  4. 线性变换
    • 通过线性变换矩阵 W O W^O WO将拼接后的矩阵映射回 d model d_{\text{model}} dmodel维度。

总结

多头注意力机制中的每个头生成的注意力输出矩阵是拼接在一起的,然后通过一个线性变换生成最终的输出。这种机制允许模型在多个子空间中并行计算注意力,从而捕捉到更丰富和多样的特征,提高模型的表示能力和性能。

  • 14
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值