隐藏状态(Hidden State)是递归神经网络(RNN)及其变种(如LSTM、GRU)中的一个重要概念。隐藏状态是RNN在处理输入序列时用于存储和传递信息的内部状态。它在每个时间步更新,捕捉输入序列中的信息和上下文关系。
隐藏状态的定义和作用
在递归神经网络中,隐藏状态 h t h_t ht是对输入序列 x t x_t xt在时间步 t t t的编码。隐藏状态的更新过程可以表示为:
h t = f ( h t − 1 , x t ) h_t = f(h_{t-1}, x_t) ht=f(ht−1,xt)
其中:
- h t h_t