NNDL 实验二 pytorch入门

一. 概念:张量、算子

张量:张量分解是机器学习中十分重要的一种方法,常用于各类多维数据或参数的建模,可视为矩阵分解的高阶形式

算子:算子是一个函数空间到函数空间上的映射O:X→X。广义上的算子可以推广到任何空间,如内积空间等。(百度百科)

二. 使用pytorch实现张量运算

1.2.1 创建张量

首先引入pytorch

import torch

1.2.1.1 指定数据创建张量

(1)通过指定的Python列表数据[2.0, 3.0, 4.0],创建一个一维张量。

ndim_1_Tensor=torch.tensor([2.0,3.0,4.0])
print(ndim_1_Tensor)

结果

 (2)通过指定的Python列表数据来创建类似矩阵(matrix)的二维张量。

ndim_2_Tensor=torch.tensor([[1.0, 2.0, 3.0],
                            [4.0, 5.0, 6.0]])
print(ndim_2_Tensor)

结果

 (3)同样地,还可以创建维度为3、4...N等更复杂的多维张量。

ndim_3_Tensor = torch.tensor([[[1, 2, 3, 4, 5],
                                   [6, 7, 8, 9, 10]],
                                  [[11, 12, 13, 14, 15],
                                   [16, 17, 18, 19, 20]]])
print(ndim_3_Tensor)

结果

1.2.1.2 指定形状创建

如果要创建一个指定形状、元素数据相同的张量,可以使用paddle.zerospaddle.onespaddle.full等API。

m, n = 2, 3

# 使用torch.zeros创建数据全为0,形状为[m, n]的Tensor
zeros_Tensor = torch.zeros([m, n])

# 使用torch.ones创建数据全为1,形状为[m, n]的Tensor
ones_Tensor = torch.ones([m, n])

# 使用torch.full创建数据全为指定值,形状为[m, n]的Tensor,这里我们指定数据为10
full_Tensor = torch.full([m, n], 10)

print('zeros Tensor: ', zeros_Tensor)
print('ones Tensor: ', ones_Tensor)
print('full Tensor: ', full_Tensor)

结果

1.2.1.3 指定区间创建

arange_Tensor = torch.arange(start=1, end=5, step=1)

# 使用paddle.linspace创建以元素个数num均匀分隔数值区间[start, stop]的Tensor
linspace_Tensor = torch.linspace(start=1,end=5,steps=5)

print('arange Tensor: ', arange_Tensor)
print('linspace Tensor: ', linspace_Tensor)

1.2.2 张量的属性

1.2.2.1 张量的形状

创建一个四维张量,并打印出shapendimshape[n]size属性。

ndim_4_Tensor = torch.ones([2, 3, 4, 5])

print("Number of dimensions:", ndim_4_Tensor.ndim)
print("Shape of Tensor:", ndim_4_Tensor.shape)
print("Elements number along axis 0 of Tensor:", ndim_4_Tensor.shape[0])
print("Elements number along the last axis of Tensor:", ndim_4_Tensor.shape[-1])
print('Number of elements in Tensor: ', ndim_4_Tensor.size)

结果

1.2.2.2 形状的改变

ndim_3_Tensor = torch.tensor([[[1, 2, 3, 4, 5],
                                   [6, 7, 8, 9, 10]],
                                  [[11, 12, 13, 14, 15],
                                   [16, 17, 18, 19, 20]],
                                  [[21, 22, 23, 24, 25],
                                   [26, 27, 28, 29, 30]]])
print("the shape of ndim_3_Tensor:", ndim_3_Tensor.shape)
reshape_Tensor = torch.reshape(ndim_3_Tensor, [2, 5, 3])
print("After reshape:", reshape_Tensor)

结果

1.2.2.3 张量的数据类型

飞桨中可以通过Tensor.dtype来查看张量的数据类型,类型支持bool、float16、float32、float64、uint8、int8、int16、int32、int64和复数类型数据。

1)通过Python元素创建的张量,可以通过dtype来指定数据类型,如果未指定:

  • 对于Python整型数据,则会创建int64型张量。
  • 对于Python浮点型数据,默认会创建float32型张量。

2)通过Numpy数组创建的张量,则与其原来的数据类型保持相同。通过paddle.to_tensor()函数可以将Numpy数组转化为张量。

import torch
# 使用torch.tensor通过已知数据来创建一个Tensor
print("Tensor dtype from Python integers:", torch.tensor(1).dtype)
print("Tensor dtype from Python floating point:", torch.tensor(1.0).dtype)

结果

 如果想改变张量的数据类型

float32_Tensor = torch.tensor(1.0)
int64_Tensor = float32_Tensor.to(torch.int64)
print("Tensor after cast to int64:", int64_Tensor.dtype)

结果

1.2.2.4 张量的设备位置

初始化张量时可以通过place来指定其分配的设备位置,可支持的设备位置有三种:CPU、GPU和固定内存。

固定内存也称为不可分页内存或锁页内存,它与GPU之间具有更高的读写效率,并且支持异步传输,这对网络整体性能会有进一步提升,但它的缺点是分配空间过多时可能会降低主机系统的性能,因为它减少了用于存储虚拟内存数据的可分页内存。当未指定设备位置时,张量默认设备位置和安装的飞桨版本一致,如安装了GPU版本的飞桨,则设备位置默认为GPU。

如下代码分别创建了CPU、GPU和固定内存上的张量,并通过Tensor.place查看张量所在的设备位置。

cpu_Tensor = torch.tensor(1, device=torch.device('cpu'))
print('cpu Tensor: ', cpu_Tensor.device)

结果

1.2.3 张量与Numpy数组转换

ndim_1_Tensor = torch.tensor([1., 2.])
print('Tensor to convert: ', ndim_1_Tensor.numpy())

结果

1.2.4 张量的访问

1.2.4.1 索引和切片

我们可以通过索引或切片方便地访问或修改张量。飞桨使用标准的Python索引规则与Numpy索引规则,具有以下特点:

  • 基于0−n0-n0−n的下标进行索引,如果下标为负数,则从尾部开始计算。
  • 通过冒号“:”分隔切片参数start:stop:step来进行切片操作,也就是访问start到stop范围内的部分元素并生成一个新的序列。其中start为切片的起始位置,stop为切片的截止位置,step是切片的步长,这三个参数均可缺省。

1.2.4.2 访问张量

针对一维张量,对单个轴进行索引和切片。

ndim_1_Tensor = torch.tensor([0, 1, 2, 3, 4, 5, 6, 7, 8])
print("Origin Tensor:", ndim_1_Tensor)
print("First element:", ndim_1_Tensor[0])
print("Last element:", ndim_1_Tensor[-1])
print("All element:", ndim_1_Tensor[:])
print("Before 3:", ndim_1_Tensor[:3])
print("Interval of 3:", ndim_1_Tensor[::3])

结果

 针对二维及以上维度的张量,在多个维度上进行索引或切片。索引或切片的第一个值对应第0维,第二个值对应第1维,以此类推,如果某个维度上未指定索引,则默认为“:”。

ndim_2_Tensor = torch.tensor([[0, 1, 2, 3],
                                  [4, 5, 6, 7],
                                  [8, 9, 10, 11]])
print("Origin Tensor:", ndim_2_Tensor)
print("First row:", ndim_2_Tensor[0])
print("First row:", ndim_2_Tensor[0, :])
print("First column:", ndim_2_Tensor[:, 0])
print("Last column:", ndim_2_Tensor[:, -1])
print("All element:", ndim_2_Tensor[:])
print("First row and second column:", ndim_2_Tensor[0, 1])

结果

1.2.4.3 修改张量

与访问张量类似,可以在单个或多个轴上通过索引或切片操作来修改张量。


提醒
慎重通过索引或切片操作来修改张量,此操作仅会原地修改该张量的数值,且原值不会被保存。如果被修改的张量参与梯度计算,将仅会使用修改后的数值,这可能会给梯度计算引入风险。

ndim_2_Tensor = torch.ones([2, 3], dtype=torch.float32)
print('Origin Tensor: ', ndim_2_Tensor)
ndim_2_Tensor[0] = 0
print('change Tensor: ', ndim_2_Tensor)
ndim_2_Tensor[0:1] = 2.1
print('change Tensor: ', ndim_2_Tensor)
ndim_2_Tensor[...] = 3
print('change Tensor: ', ndim_2_Tensor)

结果

1.2.5 张量的运算

1.2.5.1 数学运算

张量类的基础数学函数如下:

x.abs()                       # 逐元素取绝对值
x.ceil()                      # 逐元素向上取整
x.floor()                     # 逐元素向下取整
x.round()                     # 逐元素四舍五入
x.exp()                       # 逐元素计算自然常数为底的指数
x.log()                       # 逐元素计算x的自然对数
x.reciprocal()                # 逐元素求倒数
x.square()                    # 逐元素计算平方
x.sqrt()                      # 逐元素计算平方根
x.sin()                       # 逐元素计算正弦
x.cos()                       # 逐元素计算余弦
x.add(y)                      # 逐元素加
x.subtract(y)                 # 逐元素减
x.multiply(y)                 # 逐元素乘(积)
x.divide(y)                   # 逐元素除
x.mod(y)                      # 逐元素除并取余
x.pow(y)                      # 逐元素幂
x.max()                       # 指定维度上元素最大值,默认为全部维度
x.min()                       # 指定维度上元素最小值,默认为全部维度
x.prod()                      # 指定维度上元素累乘,默认为全部维度
x.sum()                       # 指定维度上元素的和,默认为全部维度

同时,为了更方便地使用张量,飞桨对Python数学运算相关的魔法函数进行了重写,以下操作与上述结果相同。

x + y  -> x.add(y)            # 逐元素加
x - y  -> x.subtract(y)       # 逐元素减
x * y  -> x.multiply(y)       # 逐元素乘(积)
x / y  -> x.divide(y)         # 逐元素除
x % y  -> x.mod(y)            # 逐元素除并取余
x ** y -> x.pow(y)            # 逐元素幂

1.2.5.2 逻辑运算

x.isfinite()                  # 判断Tensor中元素是否是有限的数字,即不包括inf与nan
x.equal_all(y)                # 判断两个Tensor的全部元素是否相等,并返回形状为[1]的布尔类Tensor
x.equal(y)                    # 判断两个Tensor的每个元素是否相等,并返回形状相同的布尔类Tensor
x.not_equal(y)                # 判断两个Tensor的每个元素是否不相等
x.less_than(y)                # 判断Tensor x的元素是否小于Tensor y的对应元素
x.less_equal(y)               # 判断Tensor x的元素是否小于或等于Tensor y的对应元素
x.greater_than(y)             # 判断Tensor x的元素是否大于Tensor y的对应元素
x.greater_equal(y)            # 判断Tensor x的元素是否大于或等于Tensor y的对应元素
x.allclose(y)                 # 判断两个Tensor的全部元素是否接近

1.2.5.3 矩阵运算

张量类还包含了矩阵运算相关的函数,如矩阵的转置、范数计算和乘法等。

x.t()                         # 矩阵转置
x.transpose([1, 0])           # 交换第 0 维与第 1 维的顺序
x.norm('fro')                 # 矩阵的弗罗贝尼乌斯范数
x.dist(y, p=2)                # 矩阵(x-y)的2范数
x.matmul(y)                   # 矩阵乘法

有些矩阵运算中也支持大于两维的张量,比如matmul函数,对最后两个维度进行矩阵乘。比如x是形状为[j,k,n,m]的张量,另一个y是[j,k,m,p]的张量,则x.matmul(y)输出的张量形状为[j,k,n,p]。

1.2.5.4 广播机制

飞桨的一些API在计算时支持广播(Broadcasting)机制,允许在一些运算时使用不同形状的张量。通常来讲,如果有一个形状较小和一个形状较大的张量,会希望多次使用较小的张量来对较大的张量执行某些操作,看起来像是形状较小的张量首先被扩展到和较大的张量形状一致,然后再做运算。

广播机制的条件

飞桨的广播机制主要遵循如下规则(参考Numpy广播机制):

1)每个张量至少为一维张量。

2)从后往前比较张量的形状,当前维度的大小要么相等,要么其中一个等于1,要么其中一个不存在。

x = torch.ones((2, 3, 4))
y = torch.ones((2, 3, 4))
z = x + y
print('broadcasting with two same shape tensor: ', z.shape)

x = torch.ones((2, 3, 1, 5))
y = torch.ones((3, 4, 1))
# 从后往前依次比较:
# 第一次:y的维度大小是1
# 第二次:x的维度大小是1
# 第三次:x和y的维度大小相等,都为3
# 第四次:y的维度不存在
# 所以x和y是可以广播的
z = x + y
print('broadcasting with two different shape tensor:', z.shape)

从输出结果看,x与y在上述两种情况中均遵循广播规则,因此在张量相加时可以广播。我们再定义两个shape分别为[2, 3, 4]和[2, 3, 6]的张量,观察这两个张量是否能够通过广播操作相加。

x = torch.ones((2, 3, 4))
y = torch.ones((2, 3, 6))
z = x + y

 从输出结果看,此时x和y是不能广播的,因为在第一次从后往前的比较中,4和6不相等,不符合广播规则。

广播机制的计算规则

现在我们知道在什么情况下两个张量是可以广播的。两个张量进行广播后的结果张量的形状计算规则如下:

1)如果两个张量shape的长度不一致,那么需要在较小长度的shape前添加1,直到两个张量的形状长度相等。

2) 保证两个张量形状相等之后,每个维度上的结果维度就是当前维度上较大的那个。

以张量x和y进行广播为例,x的shape为[2, 3, 1,5],张量y的shape为[3,4,1]。首先张量y的形状长度较小,因此要将该张量形状补齐为[1, 3, 4, 1],再对两个张量的每一维进行比较。从第一维看,x在一维上的大小为2,y为1,因此,结果张量在第一维的大小为2。以此类推,对每一维进行比较,得到结果张量的形状为[2, 3, 4, 5]。

由于矩阵乘法函数torch.matmul在深度学习中使用非常多,这里需要特别说明一下它的广播规则:

1)如果两个张量均为一维,则获得点积结果。

2) 如果两个张量都是二维的,则获得矩阵与矩阵的乘积。

3) 如果张量x是一维,y是二维,则将x的shape转换为[1, D],与y进行矩阵相乘后再删除前置尺寸。

4) 如果张量x是二维,y是一维,则获得矩阵与向量的乘积。

5) 如果两个张量都是N维张量(N > 2),则根据广播规则广播非矩阵维度(除最后两个维度外其余维度)。比如:如果输入x是形状为[j,1,n,m]的张量,另一个y是[k,m,p]的张量,则输出张量的形状为[j,k,n,p]。
 

x = torch.ones([10, 1, 5, 2])
y = torch.ones([3, 2, 5])
z = torch.matmul(x, y)
print('After matmul: ', z.shape)

结果

从输出结果看,计算张量乘积时会使用到广播机制。


笔记
飞桨的API有原位(inplace)操作和非原位操作之分。原位操作即在原张量上保存操作结果,非原位操作则不会修改原张量,而是返回一个新的张量来表示运算结果。在飞桨框架V2.1及之后版本,部分API有对应的原位操作版本,在API后加上'_'表示,如:x.add(y)是非原位操作,x.add_(y)为原位操作。 

三. 数据预处理

house_tiny.csv、boston_house_prices.csv、Iris.csv

house_tiny.csv

1.读取数据集

data = pd.read_csv('house_tiny.csv')
print(data)

 

2. 处理缺失值

“NaN”项代表缺失值。 为了处理缺失的数据,典型的方法包括插值法删除法, 其中插值法用一个替代值弥补缺失值,而删除法则直接忽略缺失值。 在这里,我们将考虑插值法。

通过位置索引iloc,我们将data分成inputsoutputs, 其中前者为data的前两列,而后者为data的最后一列。 对于inputs中缺少的数值,我们用同一列的均值替换“NaN”项。

inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean())
print(inputs)

结果

 

对于inputs中的类别值或离散值,我们将“NaN”视为一个类别。 由于“巷子类型”(“Alley”)列只接受两种类型的类别值“Pave”和“NaN”, pandas可以自动将此列转换为两列“Alley_Pave”和“Alley_nan”。 巷子类型为“Pave”的行会将“Alley_Pave”的值设置为1,“Alley_nan”的值设置为0。 缺少巷子类型的行会将“Alley_Pave”和“Alley_nan”分别设置为0和1。

inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)

 结果

3. 转换为张量格式

data = pd.read_csv("house_tiny.csv")
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean())
inputs = pd.get_dummies(inputs, dummy_na=True)
X, y = torch.tensor(inputs.values), torch.tensor(outputs.values)
print(X,y)

结果

boston_house_prices.csv

1.读取数据集

data = pd.read_csv('boston_house_prices.csv')
print(data)

结果

2. 处理缺失值

    数据集无缺失值  

3. 转换为张量格式

data = pd.read_csv('boston_house_prices.csv')
x = torch.tensor(data.values)
print(x)

结果

Iris.csv

1.读取数据集

data = pd.read_csv('Iris.csv')
print(data)

结果

2. 处理缺失值

无缺失值

3. 转换为张量格式

inputs, outputs = data.iloc[:, 0:5], data.iloc[:, 5]
outputs = pd.get_dummies(outputs, dummy_na=True)
x, y = torch.tensor(inputs.values), torch.tensor(outputs.values)

 结果

 学习体会:本次是关于pytorch的实验,学会了一些的基础的代码和算法,了解到了张量和算子的概念。学会了paddel转换为pytorch的方法。本次实验是第二次实验,是对上学期机器学习的一段回顾,对往后深度学习有着很大的帮助。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值