lag-llama源码解读(Lag-Llama: Towards Foundation Models for Time Series Forecasting)

Lag-Llama: Towards Foundation Models for Time Series Forecasting
文章内容:
时间序列预测任务,单变量预测单变量,基于Llama大模型,在zero-shot场景下模型表现优异。创新点,引入滞后特征作为协变量来进行预测。

获得不同频率的lag,来自glunoTS库里面的源码

def _make_lags(middle: int, delta: int) -> np.ndarray:
    """
    Create a set of lags around a middle point including +/- delta.
    """
    return np.arange(middle - delta, middle + delta + 1).tolist()

def get_lags_for_frequency(
    freq_str: str,
    lag_ub: int = 1200,
    num_lags: Optional[int] = None,
    num_default_lags: int = 7,
) -> List[int]:
    """
    Generates a list of lags that that are appropriate for the given frequency
    string.

    By default all frequencies have the following lags: [1, 2, 3, 4, 5, 6, 7].
    Remaining lags correspond to the same `season` (+/- `delta`) in previous
    `k` cycles. Here `delta` and `k` are chosen according to the existing code.

    Parameters
    ----------

    freq_str
        Frequency string of the form [multiple][granularity] such as "12H",
        "5min", "1D" etc.

    lag_ub
        The maximum value for a lag.

    num_lags
        Maximum number of lags; by default all generated lags are returned.

    num_default_lags
        The number of default lags; by default it is 7.
    """

    # Lags are target values at the same `season` (+/- delta) but in the
    # previous cycle.
    def _make_lags_for_second(multiple, num_cycles=3):
        # We use previous ``num_cycles`` hours to generate lags
        return [
            _make_lags(k * 60 // multiple, 2) for k in range(1, num_cycles + 1)
        ]

    def _make_lags_for_minute(multiple, num_cycles=3):
        # We use previous ``num_cycles`` hours to generate lags
        return [
            _make_lags(k * 60 // multiple, 2) for k in range(1, num_cycles + 1)
        ]

    def _make_lags_for_hour(multiple, num_cycles=7):
        # We use previous ``num_cycles`` days to generate lags
        return [
            _make_lags(k * 24 // multiple, 1) for k in range(1, num_cycles + 1)
        ]

    def _make_lags_for_day(
        multiple, num_cycles=4, days_in_week=7, days_in_month=30
    ):
        # We use previous ``num_cycles`` weeks to generate lags
        # We use the last month (in addition to 4 weeks) to generate lag.
        return [
            _make_lags(k * days_in_week // multiple, 1)
            for k in range(1, num_cycles + 1)
        ] + [_make_lags(days_in_month // multiple, 1)]

    def _make_lags_for_week(multiple, num_cycles=3):
        # We use previous ``num_cycles`` years to generate lags
        # Additionally, we use previous 4, 8, 12 weeks
        return [
            _make_lags(k * 52 // multiple, 1) for k in range(1, num_cycles + 1)
        ] + [[4 // multiple, 8 // multiple, 12 // multiple]]

    def _make_lags_for_month(multiple, num_cycles=3):
        # We use previous ``num_cycles`` years to generate lags
        return [
            _make_lags(k * 12 // multiple, 1) for k in range(1, num_cycles + 1)
        ]

    # multiple, granularity = get_granularity(freq_str)
    offset = to_offset(freq_str)
    # normalize offset name, so that both `W` and `W-SUN` refer to `W`
    offset_name = norm_freq_str(offset.name)

    if offset_name == "A":
        lags = []
    elif offset_name == "Q":
        assert (
            offset.n == 1
        ), "Only multiple 1 is supported for quarterly. Use x month instead."
        lags = _make_lags_for_month(offset.n * 3.0)
    elif offset_name == "M":
        lags = _make_lags_for_month(offset.n)
    elif offset_name == "W":
        lags = _make_lags_for_week(offset.n)
    elif offset_name == "D":
        lags = _make_lags_for_day(offset.n) + _make_lags_for_week(
            offset.n / 7.0
        )
    elif offset_name == "B":
        lags = _make_lags_for_day(
            offset.n, days_in_week=5, days_in_month=22
        ) + _make_lags_for_week(offset.n / 5.0)
    elif offset_name == "H":
        lags = (
            _make_lags_for_hour(offset.n)
            + _make_lags_for_day(offset.n / 24)
            + _make_lags_for_week(offset.n / (24 * 7))
        )
    # minutes
    elif offset_name == "T":
        lags = (
            _make_lags_for_minute(offset.n)
            + _make_lags_for_hour(offset.n / 60)
            + _make_lags_for_day(offset.n / (60 * 24))
            + _make_lags_for_week(offset.n / (60 * 24 * 7))
        )
    # second
    elif offset_name == "S":
        lags = (
            _make_lags_for_second(offset.n)
            + _make_lags_for_minute(offset.n / 60)
            + _make_lags_for_hour(offset.n / (60 * 60))
        )
    else:
        raise Exception("invalid frequency")

    # flatten lags list and filter
    lags = [
        int(lag) for sub_list in lags for lag in sub_list if 7 < lag <= lag_ub
    ]
    lags = list(range(1, num_default_lags + 1)) + sorted(list(set(lags)))

    return lags[:num_lags]

第一部分,生成以middle为中心,以delta为半径的区间[middle-delta,middle+delta] ,这很好理解,比如一周的周期是7天,周期大小在7天附近波动很正常。
在这里插入图片描述

第二部分,对于年月日时分秒这些不同的采样频率,采用不同的具体的函数来确定lags,其中有一个参数num_cycle,进一步利用了周期性,我们考虑间隔1、2、3、…num个周期的时间点之间的联系
在这里插入图片描述
原理类似于这张图,这种周期性的重复性体现在邻近的多个周期上

在这里插入图片描述

lag的用途

计算各类窗口大小

计算采样窗口大小

window_size = estimator.context_length + max(estimator.lags_seq) + estimator.prediction_length
    # Here we make a window slightly bigger so that instance sampler can sample from each window
    # An alternative is to have exact size and use different instance sampler (e.g. ValidationSplitSampler)
window_size = 10 * window_size
# We change ValidationSplitSampler to add min_past
    estimator.validation_sampler = ValidationSplitSampler(
        min_past=estimator.context_length + max(estimator.lags_seq),
        min_future=estimator.prediction_length,
    )

  1. 构建静态特征
lags = lagged_sequence_values(self.lags_seq, prior_input, input, dim=-1)#构建一个包含给定序列的滞后值的数组

static_feat = torch.cat((loc.abs().log1p(), scale.log()), dim=-1)
expanded_static_feat = unsqueeze_expand(
    static_feat, dim=-2, size=lags.shape[-2]
)

return torch.cat((lags, expanded_static_feat, time_feat), dim=-1), loc, scale

数据集准备过程

对每个数据集采样,window_size=13500,也挺离谱的

 train_data, val_data = [], []
        for name in TRAIN_DATASET_NAMES:
            new_data = create_sliding_window_dataset(name, window_size)
            train_data.append(new_data)

            new_data = create_sliding_window_dataset(name, window_size, is_train=False)
            val_data.append(new_data)

采样的具体过程,这里有个问题,样本数量很小的数据集,实际采样窗口大小小于设定的window_size,后续会如何对齐呢?

文章设置单变量预测单变量,所以样本进行了通道分离,同一样本的不同特征被采样为不同的样本

def create_sliding_window_dataset(name, window_size, is_train=True):
    #划分非重叠的滑动窗口数据集,window_size是对数据集采样的数量,对每个数据集只取前windowsize个样本
    # Splits each time series into non-overlapping sliding windows
    global_id = 0

    freq = get_dataset(name, path=dataset_path).metadata.freq#从数据集中获取时间频率
    data = ListDataset([], freq=freq)#创建空数据集
    dataset = get_dataset(name, path=dataset_path).train if is_train else get_dataset(name, path=dataset_path).test
    #获取原始数据集

    for x in dataset:
        windows = []
        #划分滑动窗口
        #target:滑动窗口的目标值
        #start:滑动窗口的起始位置
        #item_id,唯一标识符
        #feat_static_cat:静态特征数组
        for i in range(0, len(x['target']), window_size):
            windows.append({
                'target': x['target'][i:i+window_size],
                'start': x['start'] + i,
                'item_id': str(global_id),
                'feat_static_cat': np.array([0]),
            })
            global_id += 1
        data += ListDataset(windows, freq=freq)
    return data

合并数据集

# Here weights are proportional to the number of time series (=sliding windows)
        weights = [len(x) for x in train_data]
        # Here weights are proportinal to the number of individual points in all time series
        # weights = [sum([len(x["target"]) for x in d]) for d in train_data]

        train_data = CombinedDataset(train_data, weights=weights)
        val_data = CombinedDataset(val_data, weights=weights)
class CombinedDataset:
    def __init__(self, datasets, seed=None, weights=None):
        self._seed = seed
        self._datasets = datasets
        self._weights = weights
        n_datasets = len(datasets)
        if weights is None:
            #如果未提供权重,默认平均分配权重
            self._weights = [1 / n_datasets] * n_datasets

    def __iter__(self):
        return CombinedDatasetIterator(self._datasets, self._seed, self._weights)

    def __len__(self):
        return sum([len(ds) for ds in self._datasets])

网络结构

lagllama

class LagLlamaModel(nn.Module):
    def __init__(
        self,
        max_context_length: int,
        scaling: str,
        input_size: int,
        n_layer: int,
        n_embd: int,
        n_head: int,
        lags_seq: List[int],
        rope_scaling=None,
        distr_output=StudentTOutput(),
        num_parallel_samples: int = 100,
    ) -> None:
        super().__init__()
        self.lags_seq = lags_seq

        config = LTSMConfig(
            n_layer=n_layer,
            n_embd=n_embd,
            n_head=n_head,
            block_size=max_context_length,
            feature_size=input_size * (len(self.lags_seq)) + 2 * input_size + 6,
            rope_scaling=rope_scaling,
        )
        self.num_parallel_samples = num_parallel_samples

        if scaling == "mean":
            self.scaler = MeanScaler(keepdim=True, dim=1)
        elif scaling == "std":
            self.scaler = StdScaler(keepdim=True, dim=1)
        else:
            self.scaler = NOPScaler(keepdim=True, dim=1)
        self.distr_output = distr_output
        self.param_proj = self.distr_output.get_args_proj(config.n_embd)

        self.transformer = nn.ModuleDict(
            dict(
                wte=nn.Linear(config.feature_size, config.n_embd),
                h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
                ln_f=RMSNorm(config.n_embd),
            )
        )

主要是transformer里面首先是一个线性层,然后加了n_layer个Block,最后是RMSNorm,接下来解析Block的代码

在这里插入图片描述

Block

class Block(nn.Module):
    def __init__(self, config: LTSMConfig) -> None:
        super().__init__()
        self.rms_1 = RMSNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.rms_2 = RMSNorm(config.n_embd)
        self.mlp = MLP(config)

        self.y_cache = None

    def forward(self, x: torch.Tensor, is_test: bool) -> torch.Tensor:
        if is_test and self.y_cache is not None:
            # Only use the most recent one, rest is in cache
            x = x[:, -1:]

        x = x + self.attn(self.rms_1(x), is_test)
        y = x + self.mlp(self.rms_2(x))

        if is_test:
            if self.y_cache is None:
                self.y_cache = y  # Build cache
            else:
                self.y_cache = torch.cat([self.y_cache, y], dim=1)[
                    :, 1:
                ]  # Update cache
        return y

代码看到这里不太想继续看了,太多glunoTS库里面的函数了,我完全不熟悉这个库,看起来太痛苦了,还有很多的困惑,最大的困惑就是数据是怎么对齐的,怎么输入到Llama里面的,慢慢看吧

其他

来源
在这里插入图片描述

  • 22
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
华为交换机M-LAG(Multi-Chassis Link Aggregation Group)是一种基于链路聚合的技术,可实现网络设备的冗余、负载均衡和高可用性。下面将介绍如何配置华为交换机M-LAG。 首先需要注意的是,M-LAG技术要求交换机要至少有两台,并且每台交换机必须有至少两个可用的物理接口,用于组成M-LAG群组。 1.创建M-LAG群组:在交换机配置界面中输入以下命令:创建M-LAG群组,并指定群组中主节点的优先级。 [Switch] m-lag configuration [Switch-m-lag-configuration] peer entity 1 [Switch-m-lag-configuration-peer-1] priority 50 [Switch-m-lag-configuration-peer-1] quit [Switch-m-lag-configuration] peer entity 2 [Switch-m-lag-configuration-peer-2] priority 40 [Switch-m-lag-configuration-peer-2] quit 在以上命令中,我们创建了两个M-LAG群组,每个群组包含一台交换机,主节点的优先级分别为50和40。 2.创建M-LAG接口:在交换机配置界面中输入以下命令:创建M-LAG接口,并将该接口绑定到M-LAG群组。 [Switch]interface m-lag 1 [Switch-M-LAG1] port GigabitEthernet 0/0/1 [Switch-M-LAG1] port GigabitEthernet 0/0/2 [Switch-M-LAG1] quit 在以上命令中,我们创建了一个M-LAG接口,并将接口绑定到M-LAG群组1上。该接口由GigabitEthernet 0/0/1和GigabitEthernet 0/0/2两个物理接口组成。 3.为M-LAG接口绑定Tag类型IP地址:在交换机配置界面中输入以下命令:为M-LAG接口绑定Tag类型IP地址。 [Switch]interface m-lag 1.1 [Switch-M-LAG1/1] ip address 192.168.1.1 24 [Switch-M-LAG1/1] quit 在以上命令中,我们为M-LAG接口绑定了一个Tag类型的IP地址,该IP地址为192.168.1.1。 以上就是华为交换机M-LAG配置的基本步骤。通过M-LAG技术,交换机间可以实现冗余备份和负载均衡,提高网络可用性和稳定性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值