论文精度 —— 2016 CVPR 《Context Encoders: Feature Learning by Inpainting》

本文介绍了2016年CVPR论文《Context Encoders: Feature Learning by Inpainting》,该研究引入了上下文编码器进行特征学习,通过结合L2重建损失和对抗损失实现图像的精确修复。使用AlexNet作为编码器,通道级全连接层减少参数量,同时探讨了不同掩码方式的影响。尽管在语义修复上有进步,但在纹理处理上仍有局限。
摘要由CSDN通过智能技术生成

总述

这篇paper是新时代人工智能CV中的Inpainting领域中的开山之作,之前的超级传统的方法是通过在图像补丁的庞大的素材库中寻找合适的补丁来填充缺失区域,非常不可靠,如下图所示:
在这里插入图片描述
如上图所示,可以看到几乎完全没有可信度。作者受到了自动编码器的启发,创新性地提出了上下文编码器进行特征的学习,并对损失函数进行了调整,将L2重建损失函数和对抗损失进行融合,使得该工作既连贯又清晰。此外,还分别验证了三种掩码方式:(a) Central region (b) Random block © Random region,并在Paris StreetView Dataset.和 ImageNet 数据集上验证了效果。
注:作者说自动编码器不能进行语义层面的学习,这是缺点所在

一、方法详述

0. Overall

编码器获取具有缺失区域的输入图像并生成该图像的潜在特征表示。解码器采用此特征表示并产生丢失的图像内容。

1. Encoder(编码器)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天使Di María

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值