机器学习——图像识别(卷积神经网络)

图像识别通过提取颜色、纹理等特征,利用卷积神经网络进行模型训练,达到识别图像类别。颜色直方图描述颜色分布,纹理分析则关注图像的空间频率和灰度依赖关系。通过训练数据集调整模型参数,找到最优解,实现高效准确的图像识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像识别是指对原始图像进行整体分析来达到预测原始图像所属类别的技术。计算机视觉领域中对图像识别技术进行了优化,与此同时,深度学习技术也对图像识别领域展开了突破。       

首先,定义一个通用的数学模型,将输入图像转换为输出标签。
这个模型的实际输出不仅仅依赖于图像本身,还依赖模型内建的参数。这些参数由计算机通过学习获得。

图像识别步骤:

定义一个模型并提供初始的参数值
向模型输入图像数据集和已知的正确标签进行训练
模型重复校验,训练数据,持续调整参数值
直至找到合适的参数使模型输出尽可能多的正确结果
当训练完成,找到最优(接近最优的模型参数)。
 

首先是提取图片的特征,将这些特征进行分类处理,训练并建立模型,然后在进行识别。

但是让计算机去区分这些图片分别是哪一类是很不容易的,不过计算机可以知道图像的像素值的,因此,在图像识别过程中,通过颜色特征来识别是相似图片是我们常用的方式,

卷积神经网络:

卷积神经网络就相当于是采用一个内核,即一个规模较小的矩阵,去处理一个比较小的区域,然后去通过移动这个小矩阵,去处理不同的这个块。(自动从图像中去提取特征)

利用这些图片,需要对图像进行处理,提高图片质量或提取图片内容信息。 图像处理的常见操作包括图像显示,基本操作如裁剪,翻转,旋转等,图像分割,分类和特征提取,图像恢复和图像识别。

颜色:

利用颜色直方图描述图像中像素颜色的数值分布情况,可以反映图像颜色的统计分布和图像基本色调。

plt.figure()
plt.subplot(221)
plt.axis('off')
plt.title('原始图像')
plt.imshow(img)

纹理:

统计纹理分析方法是较常用的纹理特征描述分析方法,通过统计图像的空间频率、边界频率以及空间灰度依赖关系等对纹理进行描述。

ax = fig.add_subplot(3, 2, 2)
ax.plot(xs[:len(grass_patches)], ys[:len(grass_patches)], 'go', label='Grass')
ax.plot(xs[:len(sky_patches)], ys[:len(sky_patches)], 'bo', label='Sky')
ax.set_xlabel('灰度共生矩阵相似性')
ax.set_ylabel('灰度共生矩阵相关度')
ax.legend()

本文参考链接:

数字图像处理与Python实现笔记之图像特征提取icon-default.png?t=M4ADhttps://blog.csdn.net/qq_40507857/article/details/107639032?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522165236211216782184623003%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=165236211216782184623003&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_positive~default-1-107639032-null-null.142^v9^pc_search_result_control_group,157^v4^control&utm_term=图像特征提取&spm=1018.2226.3001.4187

搭建图像识别系统icon-default.png?t=M4ADhttps://blog.csdn.net/Tong_jy/article/details/81328880/?ops_request_misc=&request_id=&biz_id=102&utm_term=图像识别%20数据集的搭建&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-8-81328880.142^v9^pc_search_result_control_group,157^v4^control&spm=1018.2226.3001.4187

卷积神经网络(Convolutional Neural Network,CNN)是一种机器学习算法,其主要应用于图像识别、计算机视觉和模式识别等领域。CNN模型的设计灵感来源于科学家们对于生物视觉系统的研究。该算法的核心概念是通过卷积层、池化层和全连接层的组合,对输入的图像进行特征提取和分类。 在CNN中,卷积层是该模型的主要组成部分之一。通过定义一组卷积核(或过滤器),卷积层可以对输入的图像进行滤波操作,将原始图像中的特定特征(例如边缘和纹理)提取出来,并生成一系列特征图。这些特征图可以被认为是对原始图像进行不同尺度和方向的特征提取。 在经过卷积层之后,通常会接着使用池化层来进行下采样操作。池化层的主要目的是减小特征图的尺寸,同时保留重要的特征信息。最常见的池化操作是最大池化,它通过从特定区域选择最大值来减小特征图的尺寸。 最后,经过卷积层和池化层的多次迭代后,最后会以全连接层作为输出层,进行分类任务。全连接层的每个节点都与前一层的所有节点相连接,主要用于将最后一层的特征进行整合,并根据特征进行分类或回归。 相比于传统机器学习算法,CNN在处理图像任务方面具有更好的性能。这是因为卷积层可以通过共享权重和局部连接的方式进行参数的共享,大大减少了需要训练的参数数量,并且能够有效处理图像的平移不变性。此外,卷积神经网络还可以通过堆叠多个卷积层和全连接层来构建深层网络模型,从而进一步提高模型的性能。 总而言之,卷积神经网络是一种强大的机器学习算法,特别适用于图像识别和计算机视觉任务。通过卷积层、池化层和全连接层的组合,CNN可以有效地提取图像中的特征,并进行分类或回归等任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值