系列文章目录
深度优先算法 DFS
广度优先算法 BFS
Prim算法
Kruskal算法
Dijkstra算法
系列文章将会写图的经典的几种,有错误的地方欢迎在评论中提出。
文章目录
提示:以下是本篇文章正文内容,下面案例可供参考
一.Dijkstra算法的代码实现(c语言)
1.初始时, S只包含起点s;U包含除s之外的其他顶点,且U中顶点的距离为“起点s到该顶点的距离”【例如:U中顶点v的距离为(s, v)的长度,然后s和v不相邻,则v的距离为∞】。
2.从U中选出“距离最短的顶点k”,并将顶点k加入到S中;同时,从U中移除顶点k。
3.更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其他顶点的距离;例如,(s, v)的距离可能大于(s, k)+(k, v)的距离。
4.重复步骤2和3,直到遍历完所有顶点。
1. Dijkstra算法的部分
代码如下(示例):
void shortestpath(graphmtx *g)
{
int n=g->numvertice;
int* dist=(int *)malloc(sizeof(int)*n);
int* path=(int *)malloc(sizeof(int)*n);
int* s=(int *)malloc(sizeof(int)*n);
//初始化
for(int i=0;i<n;i++)
{
if(i!=0)
{
dist[i]=g->edge[0][i];
path[i]=0;
}
else
{
dist[i]=0;
path[i]=-1;
}
s[i]=0;
}
s[0]=1;
int w;
for(i=0;i<n;i++)
{
int min=max;
for(int j=0;j<n;j++)
{
if(i!=j&&dist[j]<min&&s[j]==0)
{
w=j;
min=dist[j];
}
}
s[w]=1;
for(int k=0;k<n;k++)
{
if(w!=k&&min+g->edge[w][k]<dist[k])
{
dist[k]=min+g->edge[w][k];
path[k]=w;
}
}
}
for(i=0;i<n;i++)
{
printf("%d %d \n",path[i],dist[i]);
}
}
2.全部代码
#include<stdio.h>
#include<malloc.h>
#include<assert.h>
#define defaultnum 10
#define t char
#define max 200
typedef struct graphmtx
{
int maxvertice;
int numvertice;
int numedge;
t *verticelist;
int **edge;
}graphmtx;
void initgraph(graphmtx *g);
void showgraph(graphmtx *g);
void insertvertice(graphmtx *g,t e);
int findpos(graphmtx *g,t e);
void insertedge(graphmtx *g,t e1,t e2,int cost);
void shortestpath(graphmtx *g);
void main()
{
graphmtx gm;
initgraph(&gm);
insertvertice(&gm,'A');
insertvertice(&gm,'B');
insertvertice(&gm,'C');
insertvertice(&gm,'D');
insertvertice(&gm,'E');
insertedge(&gm,'A','B',100);
insertedge(&gm,'A','C',30);
insertedge(&gm,'A','D',10);
insertedge(&gm,'C','B',60);
insertedge(&gm,'E','B',10);
insertedge(&gm,'D','E',50);
insertedge(&gm,'C','E',20);
showgraph(&gm);
shortestpath(&gm);
}
void initgraph(graphmtx *g)
{
g->maxvertice=defaultnum;
g->numedge=g->numvertice=0;
g->verticelist=(t*)malloc(sizeof(t)*defaultnum);
assert(g->verticelist !=NULL);
g->edge=(int **)malloc(sizeof(int *)*defaultnum);
assert(g->edge!=NULL);
for(int i=0;i<g->maxvertice;++i)
{
g->edge[i]=(int *)malloc(sizeof(int)*defaultnum);
}
for(i=0;i<g->maxvertice;++i)
{
for(int j=0;j<g->maxvertice;++j)
{
if(i==j)
g->edge[i][j]=0;
else
g->edge[i][j]=max;
}
}
}
void showgraph(graphmtx *g)
{
printf(" ");
for(int i=0;i<g->numvertice;i++)
printf("%c ",g->verticelist[i]);
printf("\n");
for(i=0;i<g->numvertice;i++)
{
printf("%c ",g->verticelist[i]);
for(int j=0;j<g->numvertice;j++)
{
if(g->edge[i][j]==max)
{
printf("@ ");
}
else{
printf("%d ",g->edge[i][j]);
}
}
printf("\n");
}
printf("\n");
}
void insertvertice(graphmtx *g,t e)
{
if(g->numedge>g->numvertice)
{
printf("已满");
return;
}
g->verticelist[g->numvertice++]=e;
}
int findpos(graphmtx *g,t e)
{
for(int i=0;i<g->numvertice;i++)
{
if(g->verticelist[i]==e)
return i;
}
return -1;
}
void insertedge(graphmtx *g,t e1,t e2,int cost)
{
int p=findpos(g,e1);
int w=findpos(g,e2);
if(p==-1||w==-1)
return;
if(g->edge[p][w]!=max)
return;
g->edge[p][w]=cost;
}
void shortestpath(graphmtx *g)
{
int n=g->numvertice;
int* dist=(int *)malloc(sizeof(int)*n);
int* path=(int *)malloc(sizeof(int)*n);
int* s=(int *)malloc(sizeof(int)*n);
//初始化
for(int i=0;i<n;i++)
{
if(i!=0)
{
dist[i]=g->edge[0][i];
path[i]=0;
}
else
{
dist[i]=0;
path[i]=-1;
}
s[i]=0;
}
s[0]=1;
int w;
for(i=0;i<n;i++)
{
int min=max;
for(int j=0;j<n;j++)
{
if(i!=j&&dist[j]<min&&s[j]==0)
{
w=j;
min=dist[j];
}
}
s[w]=1;
for(int k=0;k<n;k++)
{
if(w!=k&&min+g->edge[w][k]<dist[k])
{
dist[k]=min+g->edge[w][k];
path[k]=w;
}
}
}
for(i=0;i<n;i++)
{
printf("%d %d \n",path[i],dist[i]);
}
}