数据结构12图的经典算法--Dijkstra算法

系列文章目录

深度优先算法 DFS

广度优先算法 BFS

Prim算法

Kruskal算法

Dijkstra算法

系列文章将会写图的经典的几种,有错误的地方欢迎在评论中提出。


提示:以下是本篇文章正文内容,下面案例可供参考

一.Dijkstra算法的代码实现(c语言)


1.初始时, S只包含起点s;U包含除s之外的其他顶点,且U中顶点的距离为“起点s到该顶点的距离”【例如:U中顶点v的距离为(s, v)的长度,然后s和v不相邻,则v的距离为∞】。
2.从U中选出“距离最短的顶点k”,并将顶点k加入到S中;同时,从U中移除顶点k。
3.更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其他顶点的距离;例如,(s, v)的距离可能大于(s, k)+(k, v)的距离。
4.重复步骤2和3,直到遍历完所有顶点。

1. Dijkstra算法的部分

代码如下(示例):

void shortestpath(graphmtx *g)
{
	int n=g->numvertice;
	int* dist=(int *)malloc(sizeof(int)*n);
	int* path=(int *)malloc(sizeof(int)*n);
	int* s=(int *)malloc(sizeof(int)*n);
	//初始化
	for(int i=0;i<n;i++)
		{
			if(i!=0)
			{
				dist[i]=g->edge[0][i];
				path[i]=0;
			}
			else
			{
				dist[i]=0;
				path[i]=-1;
			}
			s[i]=0;
		}
		s[0]=1;
		int w;
	for(i=0;i<n;i++)
	{
		int min=max;
		for(int j=0;j<n;j++)
		{
			if(i!=j&&dist[j]<min&&s[j]==0)
			{
				w=j;
				min=dist[j];
			}
		}
		s[w]=1;
		for(int k=0;k<n;k++)
		{
			if(w!=k&&min+g->edge[w][k]<dist[k])
			{
				dist[k]=min+g->edge[w][k];
				path[k]=w;
			}
		}
	}

	for(i=0;i<n;i++)
	{
		printf("%d  %d \n",path[i],dist[i]);
	}
}

2.全部代码

#include<stdio.h>
#include<malloc.h>
#include<assert.h>

#define defaultnum 10
#define t char
#define max 200

typedef struct graphmtx
{
	int maxvertice;
	int numvertice;
	int numedge;

	t *verticelist;
	int **edge;
}graphmtx;


void initgraph(graphmtx *g);
void showgraph(graphmtx *g);
void insertvertice(graphmtx *g,t e);
int findpos(graphmtx *g,t e);
void insertedge(graphmtx *g,t e1,t e2,int cost);
void shortestpath(graphmtx *g);



void main()
{
	graphmtx gm;
	initgraph(&gm);
	insertvertice(&gm,'A');
	insertvertice(&gm,'B');
	insertvertice(&gm,'C');
	insertvertice(&gm,'D');
	insertvertice(&gm,'E');

	insertedge(&gm,'A','B',100);
	insertedge(&gm,'A','C',30);
	insertedge(&gm,'A','D',10);
	insertedge(&gm,'C','B',60);
	insertedge(&gm,'E','B',10);
	insertedge(&gm,'D','E',50);
	insertedge(&gm,'C','E',20);
	showgraph(&gm);

	shortestpath(&gm);
	
}




void initgraph(graphmtx *g)
{
	g->maxvertice=defaultnum;
	g->numedge=g->numvertice=0;

	g->verticelist=(t*)malloc(sizeof(t)*defaultnum);
	assert(g->verticelist !=NULL);

	g->edge=(int **)malloc(sizeof(int *)*defaultnum);
	assert(g->edge!=NULL);

	for(int i=0;i<g->maxvertice;++i)
	{
		g->edge[i]=(int *)malloc(sizeof(int)*defaultnum);
	}
	for(i=0;i<g->maxvertice;++i)
	{
		for(int j=0;j<g->maxvertice;++j)
		{
			if(i==j)
				g->edge[i][j]=0;
			else
				g->edge[i][j]=max;
		}
	}
}



void showgraph(graphmtx *g)
{
	printf("    ");
	for(int i=0;i<g->numvertice;i++)
		printf("%c   ",g->verticelist[i]);
	printf("\n");
	for(i=0;i<g->numvertice;i++)
	{
		printf("%c   ",g->verticelist[i]);
		for(int j=0;j<g->numvertice;j++)
		{
			if(g->edge[i][j]==max)
			{
				printf("@   ");
			}
			else{
				printf("%d  ",g->edge[i][j]);
			}
		}
		printf("\n");
	}
	printf("\n");

}


void insertvertice(graphmtx *g,t e)
{
	if(g->numedge>g->numvertice)
	{
		printf("已满");
		return;
	}
	g->verticelist[g->numvertice++]=e;

}


int findpos(graphmtx *g,t e)
{
	for(int i=0;i<g->numvertice;i++)
	{
		if(g->verticelist[i]==e)
			return i;
	}
	return -1;
}



void insertedge(graphmtx *g,t e1,t e2,int cost)
{
	int p=findpos(g,e1);
	int w=findpos(g,e2);
	if(p==-1||w==-1)
		return;
	if(g->edge[p][w]!=max)
		return;
	g->edge[p][w]=cost;
}



void shortestpath(graphmtx *g)
{
	int n=g->numvertice;
	int* dist=(int *)malloc(sizeof(int)*n);
	int* path=(int *)malloc(sizeof(int)*n);
	int* s=(int *)malloc(sizeof(int)*n);
	//初始化
	for(int i=0;i<n;i++)
		{
			if(i!=0)
			{
				dist[i]=g->edge[0][i];
				path[i]=0;
			}
			else
			{
				dist[i]=0;
				path[i]=-1;
			}
			s[i]=0;
		}
		s[0]=1;
		int w;
	for(i=0;i<n;i++)
	{
		int min=max;
		for(int j=0;j<n;j++)
		{
			if(i!=j&&dist[j]<min&&s[j]==0)
			{
				w=j;
				min=dist[j];
			}
		}
		s[w]=1;
		for(int k=0;k<n;k++)
		{
			if(w!=k&&min+g->edge[w][k]<dist[k])
			{
				dist[k]=min+g->edge[w][k];
				path[k]=w;
			}
		}
	}

	for(i=0;i<n;i++)
	{
		printf("%d  %d \n",path[i],dist[i]);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值