paper reading - 02. Implications of shared motor and perceptual activations on the sensorimotor cort

Implications of shared motor and perceptual activations on the sensorimotor cortex for neuroprosthetic decoding

本篇文献我主要关注的地方是不同感知任务再SMC的动态差异以及一些重要的分析方法

1. 检验电极激活响应的方法

Wilcoxon rank-sum tests
Wilcoxon 秩和检验(Wilcoxon Rank-Sum Test),需先明确其核心定位:它是一种常用的非参数统计检验方法,主要用于比较两个独立样本组的总体分布是否存在显著差异,无需假设数据满足正态分布(这是它与参数检验如 t 检验的关键区别)。

作者在研究中通过 “数据预处理(z-score 标准化)→ 定义关键时间窗口→ 实施 Wilcoxon 秩和检验→ 多重比较校正” 的完整流程,检验每个电极在不同任务(尝试说话、阅读、倾听)中的激活响应。
其中检测的时间窗的定义是:[0,1]s for attempted speech and reading and [0.5,1]s for listening,baseline都选择任务开始前的窗口

2. reading和listening是否会对attempted speech产生影响?

实验设计

  1. baseline: 实验块(block)中无任何感知内容(无阅读、无聆听),直接尝试读词,目的是作为 “无干扰” 的性能基准,对比其他干扰条件
  2. 阅读+speech:参与者先在另一台笔记本电脑上阅读文章段落,再进行目标语音尝试,目的是测试 “阅读行为” 是否干扰神经假体对 “语音尝试” 的识别
  3. listening+speech:实验块全程播放播客(podcast),参与者先聆听播客,再进行目标语音尝试,目的是目的是测试 “聆听行为” 是否干扰神经假体对 “语音尝试” 的识别

实验算法流程

每个实验块(block)的单试次(trial)遵循固定流程,确保操作一致性:

呈现目标词:显示器上先展示一个 “目标词”;
语音尝试:参与者按自己的节奏尝试说出这个目标词;
系统处理:神经假体系统对 “语音尝试” 进行三步操作 ——检测(detect)(判断是否有 “语音尝试” 发生)→ 验证(verify)(确认检测到的信号是 “有效语音相关信号”)→ 分类(classify)(识别具体是哪个目标词);
进入下一试次:完成上述步骤后,实验进入下一个试次,重复流程。

分析方法

  1. 性能指标定义 + 统计检验:2 个核心性能指标(量化系统准确性)
    指标设计聚焦于神经假体的 “实用性”—— 既要少漏检(高真阳性),又要少误检(低假阳性):

    • 真阳性率(True Positive Rate, TPR)
      定义:真正的语音尝试中,被系统成功检测到的比例(公式:TPR = 被检测到的真语音尝试数 / 总真语音尝试数)。
      意义:衡量系统 “不漏检” 的能力 ——TPR 越高,说明用户的真实语音尝试越不容易被系统忽略,实用性越强。
      实验结果:Bravo-1 的整体 TPR 为 95.6%,Bravo-3 为 98.0%,且 “阅读 / 聆听干扰” 未显著降低两人的 TPR(说明干扰不影响系统对真语音的检测)。
    • 假阳性率(False Positive Rate, FPR)
      定义:被系统检测到的 “事件” 中,不属于任何真实语音尝试的比例(公式:FPR = 误检的非语音事件数 / 系统检测到的总事件数)。
      意义:衡量系统 “不误检” 的能力 ——FPR 越低,说明系统越不会把 “非语音行为(如笑、非自愿发声)” 误判为 “语音尝试”,避免无效输出。
      实验结果:Bravo-1 的整体 FPR 仅 1.15%(仅 1 次假阳性来自 “笑”,且 31 次非自愿非语音发声中仅 1 次误检);Bravo-3 的 FPR 为 0.0%(无任何误检),且 “阅读 / 聆听干扰” 未显著提高两人的 FPR(说明干扰不增加系统的误检率)。
  2. 统计检验方法(验证结果可靠性)
    由于实验中 “试次数量较少”(文本提到 “online blocks” 试次少,此处评估 TPR/FPR 的场景同理),选择了适合 “小样本、分类数据(如‘检测成功 / 失败’‘真阳性 / 假阳性’)” 的Fisher 精确检验(Fisher Exact Test)

    检验目的:判断 “不同实验条件(基线 vs 阅读 vs 聆听)” 对 “TPR/FPR” 是否有显著影响。
    检验标准:设定显著性水平为 P > 0.01(即若 P 值大于 0.01,则认为 “条件变化对指标无显著影响”)。
    实验结论:两种指标(TPR/FPR)在不同条件下均无显著差异(P > 0.01),证明神经假体在 “阅读 / 聆听干扰” 下仍能稳定工作,对 “目标语音意图” 的特异性强。

运动皮层(SMC)上阅读、聆听、尝试说话三种任务的共享激活特征及任务间差异

分析方法

  1. 电极激活显著性检验(基础方法)
  • 检验指标:高频 gamma 活动(HGA,反映神经激活的核心指标)。
  • 对比基准:每个电极在 “三种任务中的 HGA” 与 “试次前静息状态(pre-trial resting activity)的 HGA” 对比,判断任务是否引发显著激活。
  • 统计检验:采用单侧 Wilcoxon 秩和检验(one-sided Wilcoxon rank-sum tests)—— 选择 “单侧” 是因为预设 “任务会引发 HGA 升高”(而非降低),检验效率更高;非参数检验适配脑电数据可能的非正态分布。
  • 多重比较校正:根据参与者电极数量差异,分别进行 “128 重(Bravo-1)” 或 “253 重(Bravo-3)Holm-Bonferroni 校正”,控制假阳性率(确保激活结论可靠)。
  1. 结果分析
  • 可视化每个任务的显著电极空间分布,得到图A和B,观察共享电极

    • 作者得到的结论是: “shared” electrodes activated across reading, listening, and attempted speech, localized primarily to the midPrCG (A);shared electrodes did not overlap with electrodes that encoded attempted vocal-tract (speech articulatory) or hand movements (B).在这里插入图片描述
  • 可视化图 2C、D、E 是 “任务间电极响应模式的散点图”,核心通过 “检验统计量对比 + 显著性阈值判断 + unity 线(y=x)参考” 推导结论

    • 作者得到的结论: no electrodes were responsive during reading and not also during attempted speech (Fig. 2C). A majority of reading electrodes were also responsive during listening (Fig. 2D). Of note, we observed fewer electrodes responsive to listening in the midPrCG of Bravo-1 than Bravo-3, aligning with variability seen across individuals [39]. As expected, listening responses were also found in the temporal lobe [40–42] and overlapped strongly with attempted-speech but less so with reading (Fig. 2D-E).

    (unity 线(y=x):代表 “电极在两种任务中的激活显著性完全相同”—— 若点落在 unity 线上方,说明电极对 y 轴任务的激活更显著;若落在下方,说明对 x 轴任务的激活更显著。
    垂直虚线:代表 “统计显著性的粗略阈值”(与图 2A 的阈值一致)—— 只有统计量超过该线的电极,才被认为 “对对应任务有显著激活”。)在这里插入图片描述

三种任务上共享电极的spectrotemporal responses差异(共享电极对三种任务的响应模式是否相同?)

上一步已经得到了每个任务的显著电极,以及任务间的共享电极,那不同任务的spectrotemporal responses在这些共享电极上是否存在差异?

  1. 作者直接统计三种任务的HG活动得到图F,对比强度和时间
    • 结论:三种任务在共享电极上的 HGA 强度与时间模式存在显著差异,HGA 强度排序:在共享电极上,尝试说话引发的 HGA 峰值最高,其次是阅读,聆听引发的 HGA 峰值最低;HGA 时间差异:共享电极在 “尝试说话” 任务中,在任务开始前(go-cue 前)就已出现 HGA 升高;而阅读和聆听任务的 HGA 升高仅在任务开始后出现
      在这里插入图片描述
  2. 收集低频活动信号
    • 结论:三种任务在共享电极上的低频活动(theta、beta 波)抑制程度存在显著差异。尝试说话的低频抑制最强:与阅读和聆听相比,尝试说话时共享电极的theta 波(5-12 Hz)和 beta 波(20-30 Hz)功率显著更低(即去同步化更明显,Fig. 2G)。
    • 这一结果与已有文献结论一致:
      健康人的 “主动运动(如说话的言语运动)” 会伴随运动皮层低频活动的去同步化(文献 [43,44])—— 因为主动运动需要皮层神经元更灵活地编码运动指令,低频同步化会限制这种灵活性;
      “感知性言语(如聆听)” 则伴随低频活动的同步化(文献 [45,46])—— 因为被动感知更依赖稳定的神经信号传递,而非灵活的运动编码。

这些解码模型是否可以跨任务推广?(共享电极在不同任务的神经表征是否可解码且共享?)

实验设计

  1. 任务内解码
    • 针对三种任务(尝试说话、阅读、聆听),分别在不同解剖区域训练 “10 词分类器”(输入为皮层活动特征,输出为对应词汇)。
    • 用双侧 Wilcoxon 符号秩检验(two-sided Wilcoxon signed-rank test)验证解码准确率是否显著高于随机水平(10%,因 10 词词汇表的随机概率为 1/10)。
    • 对 12 次检验(不同任务 × 不同区域组合)进行12 重 Holm-Bonferroni 校正,控制多重比较的假阳性。
  2. 跨任务泛化检验
  • 用 “尝试说话” 数据训练的分类器,预测 “聆听” 任务的词汇(反之亦然),评估模型准确率(泛化能力)。
  • 计算 “尝试说话解码” 与 “聆听解码” 中电极贡献度的相关性(斯皮尔曼相关 + 置换检验),判断神经表征是否一致。

结论

  • 任务内解码能力存在显著差异
    • 阅读:所有覆盖的解剖区域中,阅读内容的解码准确率均未超过随机水平(无法从 ECoG 信号中识别阅读的具体词汇)。
    • 聆听:仅在 Bravo-3 的颞叶(听觉加工核心区域)可解码出聆听的词汇,其他区域无法解码。
    • 尝试说话:在所有解剖区域(包括颞叶)均能准确解码,说明尝试说话的神经信号在全脑多个区域有清晰的词汇特异性表征。
      在这里插入图片描述
  • 跨任务泛化能力差,神经表征不共享
    • 用 “尝试说话” 训练的模型无法有效解码 “聆听” 内容(反之亦然),模型跨任务泛化准确率低(图 3B)。
    • 解码 “尝试说话” 与解码 “聆听” 时,电极的贡献度无显著相关性(P=0.74),说明两种任务依赖的神经群体(或信号模式)不同(图 3C)。
      在这里插入图片描述

证明了:① 尝试说话的词汇内容在多个脑区可稳定解码,而阅读和聆听的解码能力有限;② 不同任务的神经表征不共享,模型无法跨任务泛化。这既揭示了语言相关任务神经机制的特异性,也为神经假体的实用化提供了关键证据 —— 其能精准识别 “意图说话” 内容,而不受 “聆听 / 阅读” 干扰。

证明假设:共享电极在 “语音运动规划” 中发挥特异性作用

作者提出假设的支撑基础是:共享电极上的 HGA 强度与时间模式图中,可以看到“attempt speech”的任务提示(go-cue)出现前,就已出现高于基线的 HGA(高频 gamma 活动)—— 这符合 “运动规划活动” 的关键特征(运动执行前需提前调动皮层准备),并且前面的结果(2B)可以看到共享电极与 “编码具体发音器官运动(如舌、唇运动)的电极” 无重叠

所以作者提出核心假设:定位在中央前回中部(midPrCG)的 “共享电极”(对尝试说话、阅读、聆听均有激活),其核心功能是参与 “语音运动规划”(而非具体的语音发音执行)

实验设计

作者做了两部分的实验,先是分时间窗口训练分类器,再使用移除电极来证明mPrCG解刨区域的重要性。

  1. 划分 “尝试说话” 的三个连续时间窗口,分窗口训练 “尝试说话” 的词汇分类器

    • 围绕 “任务提示(go-cue,即开始说话的信号)”,将 “尝试说话” 过程拆分为三个时间窗口,聚焦不同阶段的神经功能:
      在这里插入图片描述
    • 针对每个时间窗口,分别用 “共享电极” 和 “发音编码电极” 的 ECoG 信号,训练 “10 词词汇分类器”(输入为脑电特征,输出为对应的目标词);
    • 核心评估指标:电极对分类器解码准确率的 “贡献度”—— 贡献度越高,说明该电极在对应时间窗口的神经信号对 “识别词汇” 越关键,进而反映其在该阶段的功能重要性。
  2. 电极功能剥夺实验(对比三种条件)

    • 为进一步验证 “共享电极对规划的必要性” 和 “发音编码电极对执行的必要性”,设计三种 “电极使用条件”,对比分类器准确率的变化(本质是 “剥夺某类电极后,观察任务表现是否下降”):
      在这里插入图片描述

结论

  • 结果 1:共享电极在 “运动规划阶段(go-cue 前)” 贡献度最高

    • 在 “仅 go-cue 前” 的窗口中,中央前回中部(midPrCG)的共享电极对解码准确率的贡献度最高—— 说明此时共享电极的神经信号是 “识别即将要说的词汇” 的关键,直接支持其参与 “语音运动规划”;
    • 而 “编码具体发音运动的电极”(位于中央沟附近),在 “仅 go-cue 后” 的窗口贡献度最高 —— 说明其负责 “运动执行阶段” 的信号编码(控制发音器官动作)(图 4D、E)。
      在这里插入图片描述
  • 结果 2:共享电极的功能具有 “跨窗口持续性”

    • 共享电极不仅在 “go-cue 前” 贡献显著,其对解码的贡献在 “go-cue 中” 和 “go-cue 后” 窗口也保持稳定
    • 反观发音编码电极,仅在 “go-cue 后” 贡献显著,其他窗口贡献极低 —— 这进一步说明:共享电极参与 “从规划到执行” 的全程语音加工,而发音编码电极仅负责 “执行” 这一特定阶段。
  • 结果 3:电极剥夺实验验证 “功能特异性”

    • 当 “剥夺共享电极”(无共享电极条件)时,go-cue 前窗口的解码准确率显著下降(达到最低)—— 证明共享电极是 “运动规划阶段” 的必需电极,无其则无法有效准备语音运动;
    • 当 “剥夺发音编码电极”(无发音编码电极条件)时,go-cue 后窗口的解码准确率显著下降(达到最低)—— 证明发音编码电极是 “运动执行阶段” 的必需电极,无其则无法完成具体发音动作(图 4F)。
      在这里插入图片描述

思考

本文献主要是验证了SMC中的共享知觉和运动表征对两名瘫痪患者的语音神经假体的影响,因为作者发现SMC在三类任务(reading,listening,speech)中有共享的神经群体,所以好奇既然三种任务都会激活这些电极,那么是否阅读或者听力会对语音神经假体的解码性能产生影响(结论是基本不会)。在实验中对共享电极在不同任务上的表现进行分析,无论是分析erp,还是使用分类器,都可以证明共享电极对于三类任务编码的内容是不同的,即这些神经群体对知觉任务和speech是有区分性的。且最后作者也证明了mPrCG是参与运动规划而非运动执行。

本文献中使用的方法虽然简单,但是实验设计非常具有参考意义,明确问题,使用简单的方法就可以得出想要的答案,反观我自己的分析,使用了很多方法,但似乎都没有得到想要的结果,最重要的就是没有明确问题就开始进行实验分析,这样往往很难得到想要的结果!

对我的课题启发:是否三种任务在多频段上有不同的时空差异,可以先挑选显著电极,再比较三种任务电极在不同判断的空间分布差异;然后可以对不同解剖学区域的电极分别可视化平均erp,比较时间和power差异;然后可以类比作者的实验,找出三种任务在每一个频段上的共享电极,不同频段间对比共享电极差异。这样也可以发现一些频段多层级差异。可视化方法也可以参考作者的任务间电极响应模式的散点图,因为脑表面可视化的图总是很大,使用散点图可以两两比较不同任务的共享电极差异了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值