
图学习
文章平均质量分 80
头发没了还会再长
你不需要很厉害才开始,但你要开始才能很厉害
展开
-
图学习——06.metapath2vec
给定如下图的一个语料,假设窗口大小为5(给定节点左右两个节点出现的概率),当给定节点The的时候,计算quick和brown出现的概率,同样,在给定quick的时候,计算The,brown和fox出现的概率,以此类推。首先,第三个表示,vti和vi+1不相邻,那游走的概率就是0,第二个表示,两个节点相邻,但是vi+1不是元路径所规定的节点类别,那游走概率也是零,第一个就是。比如给定下图元路径MIT,a1,p1,那么给定节点a1,就可以计算节点MIT出现的概率和p1出现的概率并使其最大化。原创 2022-10-19 22:41:44 · 1404 阅读 · 0 评论 -
图学习——05.GTN(Graph Transformer Network)
在本文中,我们提出了能够生成新图结构的Graph Transformer Network(GTN),其中包括识别原始图上未连接节点之间的有用连接,同时在端到端学习新图上的有效节点表示形式。最近的一种补救方法是手动设计元路径,这些元路径是与异构边连接的路径,并将异构图转换为由元路径定义的其次图表示,而HAN通过将异构图转换为由元路径构造的其次图来学习图表示学习。但是,这些方法由领域专家手动选择元路径,因此可能无法捕获每个问题的所有有意义的关系,同样,元路径的选择也会显著影响性能。 与这些方法不同,我们的可以在原创 2022-10-17 22:23:40 · 2726 阅读 · 0 评论 -
图学习——04.HAN(异构图注意力网络)
什么是异构图,什么是元路径,什么是HAN,怎么计算attention,节点级别的attention和语义级别的attention原创 2022-10-17 20:24:24 · 2539 阅读 · 0 评论 -
图学习——03.PyG的使用
下面是对举例的解释和注释,记录学习内容。一个两次GCN的模型举例。原创 2022-10-16 15:37:24 · 894 阅读 · 1 评论 -
图学习——02.Graph Neural Network
GCN,GraphSAGE,GAN原创 2022-10-15 22:43:38 · 413 阅读 · 0 评论 -
图学习——01.Graph Embedding
几种常见且有效的网络表征方式:DeepWork,Node2Vec,Node2Vec,SDNE,Struc2vec原创 2022-10-15 20:32:20 · 595 阅读 · 0 评论