
BCI
文章平均质量分 95
头发没了还会再长
你不需要很厉害才开始,但你要开始才能很厉害
展开
-
【Img_pipe for iElectrodes Localization】
A: 因为每一个被试的大脑都不相同,但最初的 T1图像将所有的被试的原点统一在图像的中心,在不同被试之间会存在差异,导致在重建大脑和标注电极在标准脑模板的时候,会出现很大误差,进行AC-PC对齐可以标准化所有的被试在一个基准上,这时再进行重建和标注任务时减少了个体化差异带来的误差。在开始之前,需要在每个被试的CT和T1目录下,mkdir acpc,将T1.nii文件移动到acpc下,并重命名为T1_orig.nii,再mkdir CT,将CT.ni移动到CT目录下。大脑重建可以改善图像的质量,原创 2024-07-20 14:54:19 · 857 阅读 · 0 评论 -
语音神经科学—08.Dissecting neural computations in the human auditory pathway using deep neural
本文使用一种新的 DNN 模型研究从听觉神经到语音皮层的神经编码,DNN 的分层表示与整个上行听觉系统(ascending auditory)的神经活动相关。并且深层的 DNN 与皮层的高阶活动相关,DNN 的计算与语音中的音素和音节结构 align。总之,作者将 DNN 模型计算和人类听觉神经响应相关联,增强 AI 模型的可解释性。,也可以直接去 b 站搜上科大刘泉影的课程进行学习~Q: 什么是上行听觉通路(ascending auditory pathway)?原创 2024-03-29 11:39:13 · 827 阅读 · 0 评论 -
语音神经科学—06.Understanding rostral–caudal auditory cortex contributions to auditory perception
环境声音识别、声音产生的感觉运动引导和声音的空间处理涉及的神经系统之间的功能和解剖上的区别(functional and anatomical distinction)。而最近的研究则指出前部和后部听觉皮层存在计算上的差异,这可能解释了听觉处理中的功能差异。这些功能差异可能源自于前部和后部听觉皮层神经元(rostral and caudal auditory cortex)的响应时间和时间特性的差异,因此灵长类动物听觉途径的计算模型应该关注这些。原创 2024-03-24 18:37:56 · 1115 阅读 · 0 评论 -
分析方法—temporal receptive field(TRF)
总结来说,时间感受野其实就是一个 filter!课程中的描述—.(使用时间感受野与刺激进行卷积来描述)时间感受野一般是听觉计算中使用的,在视觉中,有另一种分析叫做空间感受野(spatial receptive fields)。回归权重(Regression weights)是指在回归分析中用于估计自变量与因变量之间关系的权重或系数。回归分析是一种统计方法,用于建立自变量与因变量之间的关联模型,并通过拟合数据来估计模型中的参数。在简单线性回归中,只有一个自变量与一个因变量之间的关系被建模。原创 2024-03-20 20:50:45 · 1119 阅读 · 0 评论 -
语音神经科学—05. Human cortical encoding of pitch in tonal and non-tonal languages
本文主要研究音调语言在不同母语的人群的大脑皮层中是如何被编码的,为了确定是否在语音感知上存在语言特异性,作者让母语为普通话和母语为英语的人都被动的听普通话和语言语音,并记录他们大脑皮层的活动。在普通话说话者中,观察到对普通话音调类别的敏感性增强。这表明他们的大脑对普通话语音的音调特征更为敏感。研究结果表明,语音感知依赖于一个共享的皮层听觉特征处理机制。然而,这个共享的特征处理机制可能会根据特定语言的统计特性而进行调整。原创 2024-03-20 16:03:32 · 1101 阅读 · 0 评论 -
语音神经科学—04.Speech Computations of the Human Superior Temporal Gyrus
本文献描述了颞上沟中语音声音表示依赖于基本的非线性和动态过程,例如分类(categorization)、归一化(normalization)上下文恢复(contextual restoration)和时间结构的提取。在颞上沟中,大量神经元的集体活动形成了特定的模式,这些模式代表了语音中的抽象音素(phoneme)和音节(syllable)单位。这些高阶的表示形式支持我们感知和理解语音。本综述介绍了颞上沟中音韵处理的多尺度、循环模型,强调了听觉系统和语言系统之间的关键接口。原创 2024-03-15 17:07:26 · 1349 阅读 · 0 评论 -
BCI-自我Q&A 记录
通过对声音信号在时域上进行分析,我们可以观察到声音能量的快速增加,即声音信号在短时间内的振幅明显增大。谱分析是对声音信号进行频谱特征分析的过程。这种事件驱动的感知方式使我们能够快速、准确地捕捉到语音中的重要信息,并理解和解释语音的特征和结构。它们能够提供关于声音信号的时间动态特征和频谱特征的信息,帮助系统识别和生成语音,并提高语音识别和语音合成的性能和质量。总的来说,谱分析的结果提供了关于声音信号在频域上的能量分布和频率特征的信息。A: 谱分析的结果可以提供有关声音信号在频域上的能量分布和频率特征的信息。原创 2024-03-13 20:55:53 · 950 阅读 · 0 评论 -
语音神经科学—03.A high-performance speech neuroprosthesis
本文提出了一个高效的语音到文本的脑机接口,针对无法清晰说话的病人,记录来自皮质内微阵电极的峰值活动并转录成想要表达的文本。并且作者从实验中强调了对语音BCI有利的两个方面:混合编码到语音发音器官的空间分布,(1)使得仅从大脑皮层的一个小区域就能进行准确解码,(2)并在瘫痪多年后仍保持对音位的详细发音表征。Q:混合编码到语音发音器官的空间分布表示什么?A: 指在大脑皮层的特定区域,神经元对语音发音器官(如舌头、嘴唇等)的活动表现出混合编码。这意味着一个小区域的神经元可以对多个语音发音器官的活动产生响应。原创 2023-12-15 16:48:46 · 1327 阅读 · 0 评论 -
语音神经科学—02.Speech synthesis from neural decoding of spoken sentences
研究者设计了一个神经解码器,明确地利用人类大脑皮层活动中编码的运动学和声音表征来合成可听的语音。针对严重瘫痪或者由语言障碍的病人,我们需要研究一个高效的交流方式来帮助他们交流。而目前最快的方法就是直接从大脑皮层的神经活动中解码出语音。本文作者提出了一个两阶段的解码器,先从脑电信号中解码出口腔运动学表征,再从口腔运动学表征中解码出声学特征,最后合成语音信号。作者在本文中对解码器的效果做了大量的实验进行分析,比如频谱图,中值频谱图。作者也设计了听觉任务,对合成的语音进行测试。原创 2023-12-13 15:50:33 · 1411 阅读 · 0 评论 -
语音神经科学-01.The cortical organization of speech processing
本文作者概述了语音处理的双流模型,然后讨论了有关语音识别过程中预测编码来源的证据。并且作者总结出,腹侧感觉运动流才是促进语音识别的正向预测的来源。解释语音处理的双路模型,包括背侧和腹侧通路在语言处理中的功能。理解对背侧通路某些组成部分的干扰如何导致传导性失语症。解释运动行为中状态反馈控制的基本原理。理解预测编码在运动控制和知觉中的作用,以及两个通路中的预测编码可能具有不同的功能后果。背侧流正向预测主要服务于运动控制功能,并不促进对他人的语音识别,而腹侧流正向预测功能可以增强语音识别。原创 2023-12-09 21:58:53 · 1587 阅读 · 2 评论 -
BCI-Two-streams hypothesis(双流假说)
双流假设(Two-stream hypothesis)是关于视觉和听觉神经处理的模型。该假设最初由大卫·米尔纳(David Milner)和梅尔文·古德尔(Melvyn A. Goodale)于1992年的一篇论文中进行了初步描述,认为人类拥有。最近也有证据表明存在。当视觉信息离开枕叶(occipital lobe),声音离开语音网络时,它们分别沿着两个主要的通路或“流”进行传递。通路(也被称为“what通路”)通向颞叶,与物体和视觉识别有关。原创 2023-12-07 16:48:59 · 2056 阅读 · 0 评论