
文献阅读——时序图
文章平均质量分 87
头发没了还会再长
你不需要很厉害才开始,但你要开始才能很厉害
展开
-
时序图文献精度——7.2019-IJCAI-Spatio-Temporal Attentive RNN for Node Classification in Temporal Attributed G
时间属性图中的节点分类在具有挑战性:首先,。其次,由于时间维度和空间维度纠缠在一起,为了学习一个目标节点的特征表示,是非常理想且具有挑战性的。作者提出的STAR通过。它进一步将邻域表示和节点属性输入到一个中,以共同学习时空上下文信息。在此基础上,我们利用对模型的可解释性进行了全面的分析。在真实数据集上的大量实验证明了STAR模型的有效性。原创 2023-01-20 23:46:31 · 366 阅读 · 0 评论 -
时序图文献精读——6.2019-ICLR-DYREP: LEARNING REPRESENTATIONS OVER DYNAMIC GRAPHS
在中出现了两个基本问题: (i)如何优雅地在图上建模动态过程?(ii)如何利用这样的模型来有效地将不断发展的图信息编码为低维表示?我们提出了一个双时间尺度的深时间点过程模型,以捕获观测过程的交错动态。该模型被时间注意表示网络进一步参数化,该网络,进而驱动观察到的图动力学的非线性演化。我们的统一框架是使用一个有效的无监督程序进行训练的,并具有泛化不可见节点的能力。原创 2023-01-13 22:51:02 · 695 阅读 · 0 评论 -
时序图文献精度——5.2019-IJCIA-Node Embedding over Temporal Graphs
作者提出了一种的方法。,并将这种动态整合到时间节点嵌入框架中,用于不同的图预测任务。作者也提出了一个,它通过,这样它就可以优化每个给定的任务(例如,链接预测)。该算法使用静态节点嵌入初始化,然后在,并最终适应联合优化中的给定任务。原创 2023-01-11 20:46:16 · 475 阅读 · 0 评论 -
时序图文献精度——4.2019-KDD-Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks
这篇文章的部分修正,修正部分如下。原创 2023-01-10 00:53:19 · 187 阅读 · 0 评论 -
时序图文献精度——3.2019-NeurlPS-Self-attention with Functional Time Representation Learning
为了弥合建模时间无关和时间相关事件序列之间的差距,作者引入了一个功能特征图,将时间跨度嵌入到高维空间中。通过构造相应的平移不变时间核函数,揭示了经典函数分析结果,即Bochner定理和Mercer定理下。我们提出了几个模型来学习函数时间表示以及与事件表示的交互。原创 2023-01-10 00:29:12 · 517 阅读 · 0 评论 -
时序图文献精度——2.2018-arXiv-Learning Dynamic Embeddings from Temporal Interaction Networks
表示学习为用户和物品属性的动态演变建模提供了一种有吸引力的解决方案,其中每个用户/物品可以嵌入到欧几里得空间中,其演变可以通过嵌入的动态变化来建模。在此,作者提出了一种。JODIE有三个组件。首先,使用两个相互递归的循环神经网络更新用户和项目嵌入的每次交互。其次,训练一种新的来预测用户在未来任何时间的嵌入。最后,直接预测项目在未来交互中的嵌入。由于复杂的用户-用户依赖关系,传统的训练数据批处理无法完成。因此,作者提出了一种新的批处理算法,称为t-Batch,它。原创 2023-01-05 23:19:24 · 315 阅读 · 1 评论 -
时序图文献精度——1.2018-KDD-Embedding Temporal Network via Neighborhood Formation
基于Hawkes过程的时序图原创 2023-01-05 00:48:55 · 642 阅读 · 8 评论