形式语言与自动机理论
9 图灵机(TM)
文章目录
9.1 TM的基本定义
基本模型包括:
-
一个有穷控制器(FSC)
-
一个含有无穷多个带方格的输入带
-
一个读头
基本概念:
- 输入带具有左端点,右端是无穷的
- 每个带方格恰能容纳一个符号
- 在TM启动时,长度为n的输入串被存放在输入带左端开始的连续n个带方格中,后续带方格中均含有一个空白符号
- TM的每次移动与所读符号、所处状态有关
- 一个移动将完成以下三个动作:
- 改变有穷控制器的状态
- 在当前所读符号所在的带方格中印刷一个符号
- 将读头向右或者向左移一格
形式化定义:
状态转移函数文法解释:同时满足前面两部分条件后执行后面的动作
图灵机开始工作:
- 读写头读出存储带上当前方格中的字母/数字
- 根据自身当前状态和所读到的字符,找到相应的程序语句
- 根据相应程序语句,做三个动作**(写,改,移)**
符号说明:
- Q
- ∑:Sigma
- Γ:Gamma
- δ:Delta
- B/U:空白符
与FA(有穷自动机)的区别:
- 磁带的内存是无限的**(无穷带)**
- 读写头是可读可写的**(可读可写)**
- 读写头是可以左右移动的(FA只能往右)
- 一旦进入可接受状态或者拒绝状态,就会立即停下来
例9-1:
备注:
9.2 TM的即时描述
定义:
举例说明:
其中的二元关系:
二元关系说明:
9.3 例题
9.4 停机状态解释
9.5 TM接受的语言
TM接收的语言叫做递归可枚举语言,也叫做0型文法
9.6 TM的变形
9.7 Church-Turing论题
9.8 通用TM
9.9 几个相关概念
- 可计算语言
- 不可判定性
- P-NP问题