【使用 PCA 实现对鸢尾花四维数据(Iris)进行降维处理】

该博客介绍了如何使用PCA(主成分分析)对鸢尾花数据集进行降维处理,通过Python的sklearn库实现。降维后,数据由四维降至二维,便于在二维坐标系中以不同颜色区分不同类别的鸢尾花。代码展示了从数据加载、PCA模型训练到降维结果的可视化全过程。总结了PCA的优缺点,包括减少数据复杂度、方便模型拟合,但也存在计算成本高和信息丢失的风险。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【任务描述】:

Task Eighteen:

使用 PCA 实现对鸢尾花四维数据(Iris)进行将为处理,并对降维后的数据根据 不同的类别用不同颜色显示在二维坐标系中。

【维度与降维算法PCA】

维度:指的是样本的数量或特征的数量,一般无特别说明,指的都是特征的数量。

降维:降维算法中的”降维“,指的是降低特征矩阵中特征的数量。

PCA降维算法:主成分分析技术,sklearn中的一个降维算法。

 from sklearn.decomposition import PCA

【数据集查看】

iris = load_iris()  # 获取鸢尾花数据集
Y = iris.target  # 数据集标签 ['setosa', 'versicolor', 'virginica'],山鸢尾、变色鸢尾、维吉尼亚鸢尾
X = iris.data  # 数据集特征 四维,花瓣的长度、宽度,花萼的长度、宽度

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值