Day04 Pandas真没你想的那么难

初识pandas

详见我的github地址,放到评论区里了,那个观感更佳,而且对应的data文件和每一步的输出也可以看到。请移步评论区。这个我还没用搞好格式,见谅。希望可以共同进步~
 

import pandas as pd # pandas库就是来读取文件中内容的一个工具,别被吓到了
data = pd.read_csv('data.csv') # 将data.csv文件中的内容读取出来,放到data变量中
data.head() #data的前5行
type(data) #打印一下data的类型
data.isnull() # 看下data数据中的每一个地方是否有缺失值
data.head(10) #data的前10行
data2 = pd.read_excel('data.xlsx') # 读取Excel文件
data2
data.head() # Excel中的前几行
data.head(10) # Excel中的前10行
data.info() # data的信息
data.columns # data中的每一列的title
data.describe()   # 数值列的基本统计量
data.dtypes #各列数据类型
data.info() 
data["Annual Income"].dtype
data.isnull()
type(data.isnull())
data.isnull()
data.isnull().sum() #每列缺失值的数量
data['Annual Income'] # 访问data中的Annual Income列
type(data['Annual Income']) # data中的单独一列的类型
# 计算 ’Annual Income' 列的中位数,会自动忽略NaN值
median_income = data['Annual Income'].median()
median_income
dian_income,inplace=True) # 使用中位数来填充缺失值,两个参数,第一个是你要用什么参数填,第二个是找只填缺失值
# 检查下是否有缺失值
data['Annual Income'].isnull().sum() # 查一下data中Annual Income列是否有缺失值
# 使用众数填充缺失值
import pandas as pd
data = pd.read_csv('data.csv') # 重新读一遍数据
mode = data['Annual Income'].mode()
mode
mode = mode[0]
#众数填补
data['Annual Income'].fillna(mode,inplace=True)
# 检查下是否有缺失值 # 查一下缺失值个数
data['Annual Income'].isnull().sum()
data.columns # 查看列名
type(data.columns) # 查看列名, 具体有什么用?
import numpy as np
a = np.array([1,2,3]) # 一维数组
a.tolist() # 转换为列表
c = data.columns.tolist()
type(c)
c
type(c[0])
# 循环遍历c这个列表中的每一列
for i in c:
    if data[i].dtype != 'object':
        if data[i].isnull().sum() > 0:
            mean_value = data[i].mean()
            #用均值填充缺失值
            data[i].fillna(mean_value, inplace=True)
data.isnull().sum()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值