贝叶斯网络
贝叶斯方法:
贝叶斯派思考问题的固定模式:
先验分布+样本信息=后验分布
其中先验信息一般来源于经验和历史资料
贝叶斯公式:
贝叶斯网络,又称新年网络,或有向无环图模型,是一种概率模型。
贝叶斯网络三种形式:head-to-heag,tail-to-tail、head-to-tail
粒子滤波
随机选取预测域的N个点,称为粒子。以此计算出预测值,并算出在测量域的概率,即权重,加权平均就是最优估计。之后按权重比例,重采样,进行下次迭代。
粒子滤波是一种非线性的求解器。
高斯过程
高斯过程是概率论和数理统计中随机过程的一种,是多源高斯分布的扩展,被应用于机器学习、信号处理等领域。
一个高斯过程为一个均值函数和协方差函数唯一定义。
核函数(协方差)是一个高斯过程的核心,核函数决定了一个高斯过程的性质。
核函数在高斯过程中起生成一个协方差矩阵(相关关系数矩阵)来衡量任意两个点之间的距离。
不同的核函数有不同的衡量方法,得到的高斯过程的性质也不一样。