动态规划-最长连续不下降子序列

题目描述:在一个数列中,找到一个最长的子序列(可以不连续),使得这个子序列是不下降(即非递减的)
举例:A={1,2,3,-1,-2,7,9} (下标从1开始),它的最长不下降子序列为{1, 2,3, 7,9}

  • 分析:将dp[i]表示为以A[i]结尾的最长的非递减子序列
  • dp[i]默认值为1,即只有它一个元素
  • 对i之前的元素进行遍历,判断是否A[j]<=A[i]以及dp[i] > dp[j]+1
  • 如果是,则状态转移方程为 dp[i] = dp[j] + 1;

上代码

```c++
//最长不下降子序列
#include <bits/stdc++.h>
using namespace std;

int f[1001], dp[1001];
int main()
{
    int n;
    cin >> n;
    for (int i = 1; i <= n; ++i) {
        scanf("%d", &f[i]);
    }
    dp[0] = 0;
    int max_n = 0;
    for (int i = 1; i <= n; ++i) {
        dp[i] = 1;
        //遍历i前面的元素,如果有f[j]<=f[i]并且在原有的dp[j]上+f[i]本身 -> 大于dp[i],则表示能接上,形成长度加一的子序列
        for (int j = 1; j < i; ++j) {
            if((f[j] <= f[i]) && (dp[i] < dp[j] + 1)) {
                dp[i] = dp[j] +1;
            }
        }
        max_n = max(max_n, dp[i]);
    }
    cout << max_n;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NCU-wfb

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值