READ-2329 On the Byzantine Robustness of Clustered Federated Learning

READ-2329 On the Byzantine Robustness of Clustered Federated Learning

论文名称On the Byzantine Robustness of Clustered Federated Learning
作者Felix Sattler; Klaus-Robert Müller; Thomas Wiegand; Wojciech Samek
来源IEEE ICASSP 2020
领域Machine Learning - Federal learning - Security - Targeted & untargeted poisoning attack
问题已有的健壮性聚合方法需要修改FL的通信过程,并且通信代价较高
方法在CFL的框架下研究拜占庭设置,去除有明显恶意行为的cluster
创新在CFL框架上,研究健壮性聚合方法

阅读记录

一、预备知识:CFL

1. 在余弦距离下确定cluster
在这里插入图片描述

  • 当两个客户端的数据同构时,最终两个客户端的解空间将存在交集,达到最优解时,两个客户端更新的角度接近于0,余弦值接近于1;
  • 反之,当客户端的数据独立时,解空间不存在交集,达到最优解时,两个客户端的角度趋近于180度,余弦值接近-1.
    因此,从客户端更新的余弦角度可以判断二者数据是否同构,α越大越相似

2. 计算趋近程度
在这里插入图片描述

  • θ:符合训练目标的模型参数
  • r:经验风险,训练集上的平均损失
  • R:真实风险=期望风险,真实分布下的平均损失
  • 目标:使得每个客户端的经验风险趋近于期望风险,γ表示趋近程度

3. 聚类
在这里插入图片描述

  • c:不同cluster
  • max:对于每种划分方式,找到两个cluster之间客户端的最远距离
  • min:对于不同划分方式,找到最小的最远距离
  • 含义:找到两个cluster距离最近的划分方式,使得客户端分布尽可能接近

4. 类间相似度的上限
在这里插入图片描述
简化以上公式有:
在这里插入图片描述
该不等式即为构成最优聚类的充分条件。

二、区别:FL & CFL & CFL for Byzantine Robustness

在这里插入图片描述

  1. FL:客户端数据独立同分布
  2. Clustered Federated Learning:客户端数据分布不一定相同,将数据分布相同的客户端划分为一个cluster
  3. Byzantine setting:恶意客户端可能导致联邦学习无法收敛
三、CFL for Byzantine Robustness

1. 标准CFL

  • 每个客户端在自己所在cluster的全局模型上进行本地训练,将更新提交给服务器
  • 服务器在原划分的基础上对客户端进行进一步的聚类
  • 每个cluster聚合自己所拥有客户端的模型

2. 拜占庭健壮的CFL
由于多数客户端属于一个良性集群,而其他客户端为恶意的,因此仅选择最大集群进行下一步聚合

在这里插入图片描述

总结

本文使用余弦相似度对客户端进行聚类,层层排除恶意客户端。
本文的设计存在以下问题:

  1. 受数据分布的影响较大
  2. 当攻击者进行适应性攻击时,容易出现大范围的假阳,反而导致性能下降
  3. 需要先验知识:相似度阈值

本文实验设置存在以下问题:

  1. 实验指标选的不好:假阴、假阳
  2. 实验设计不是很好:在不同数据分布程度下的性能检验
  3. 没有和其他基于聚类的恶意检测进行对比
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值