READ-2329 On the Byzantine Robustness of Clustered Federated Learning
论文名称 | On the Byzantine Robustness of Clustered Federated Learning |
---|---|
作者 | Felix Sattler; Klaus-Robert Müller; Thomas Wiegand; Wojciech Samek |
来源 | IEEE ICASSP 2020 |
领域 | Machine Learning - Federal learning - Security - Targeted & untargeted poisoning attack |
问题 | 已有的健壮性聚合方法需要修改FL的通信过程,并且通信代价较高 |
方法 | 在CFL的框架下研究拜占庭设置,去除有明显恶意行为的cluster |
创新 | 在CFL框架上,研究健壮性聚合方法 |
阅读记录
一、预备知识:CFL
1. 在余弦距离下确定cluster
- 当两个客户端的数据同构时,最终两个客户端的解空间将存在交集,达到最优解时,两个客户端更新的角度接近于0,余弦值接近于1;
- 反之,当客户端的数据独立时,解空间不存在交集,达到最优解时,两个客户端的角度趋近于180度,余弦值接近-1.
因此,从客户端更新的余弦角度可以判断二者数据是否同构,α越大越相似
2. 计算趋近程度
- θ:符合训练目标的模型参数
- r:经验风险,训练集上的平均损失
- R:真实风险=期望风险,真实分布下的平均损失
- 目标:使得每个客户端的经验风险趋近于期望风险,γ表示趋近程度
3. 聚类
- c:不同cluster
- max:对于每种划分方式,找到两个cluster之间客户端的最远距离
- min:对于不同划分方式,找到最小的最远距离
- 含义:找到两个cluster距离最近的划分方式,使得客户端分布尽可能接近
4. 类间相似度的上限
简化以上公式有:
该不等式即为构成最优聚类的充分条件。
二、区别:FL & CFL & CFL for Byzantine Robustness
- FL:客户端数据独立同分布
- Clustered Federated Learning:客户端数据分布不一定相同,将数据分布相同的客户端划分为一个cluster
- Byzantine setting:恶意客户端可能导致联邦学习无法收敛
三、CFL for Byzantine Robustness
1. 标准CFL
- 每个客户端在自己所在cluster的全局模型上进行本地训练,将更新提交给服务器
- 服务器在原划分的基础上对客户端进行进一步的聚类
- 每个cluster聚合自己所拥有客户端的模型
2. 拜占庭健壮的CFL
由于多数客户端属于一个良性集群,而其他客户端为恶意的,因此仅选择最大集群进行下一步聚合
总结
本文使用余弦相似度对客户端进行聚类,层层排除恶意客户端。
本文的设计存在以下问题:
- 受数据分布的影响较大
- 当攻击者进行适应性攻击时,容易出现大范围的假阳,反而导致性能下降
- 需要先验知识:相似度阈值
本文实验设置存在以下问题:
- 实验指标选的不好:假阴、假阳
- 实验设计不是很好:在不同数据分布程度下的性能检验
- 没有和其他基于聚类的恶意检测进行对比