READ-2332 CONTRA: Defending Against Poisoning Attacks in Federated Learning

本文提出了一种名为CONTRA的方法,针对大规模非独立同分布(FederatedLearning)中遭遇的标签翻转、后门数据和女巫攻击。CONTRA利用余弦相似度评估本地模型参数的可信度,并设计了一种动态信誉机制,以抵御有目标的投毒攻击。
摘要由CSDN通过智能技术生成
论文名称CONTRA: Defending Against Poisoning Attacks in Federated Learning
作者Sana Awan, Bo Luo, Fengjun Li
来源ESORICS 2021
领域Machine Learning - Federal learning - Security - Targeted poisoning attack
问题在non-IID数据分布的大规模FL系统中,现有的检测和防御机制的性能显著下降
方法Contra实现了一个基于余弦相似度来确定每一轮中局部模型参数的可信度,提出一种根据单个客户每一轮对全局模型的历史贡献动态提升或惩罚单个客户端的信誉方案

阅读记录

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


总结

针对标签翻转攻击+后门数据投毒攻击+女巫攻击:

  • 由于局部数据分布的动态性,客户端的局部目标和全局目标的方向可能不会很好地对齐。在有目标投毒攻击中,恶意客户端的目标是将具有特定特征的数据分类到目标类中,所以其更新接近于恶意目标的方向,而不是全局目标的方向,又因为恶意客户端具有相同的中毒目标,因此任意两个恶意更新之间的角度总是小于恶意更新与良性更新的角度、任意两个良性更新之间的角度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值