论文名称 | CONTRA: Defending Against Poisoning Attacks in Federated Learning |
---|---|
作者 | Sana Awan, Bo Luo, Fengjun Li |
来源 | ESORICS 2021 |
领域 | Machine Learning - Federal learning - Security - Targeted poisoning attack |
问题 | 在non-IID数据分布的大规模FL系统中,现有的检测和防御机制的性能显著下降 |
方法 | Contra实现了一个基于余弦相似度来确定每一轮中局部模型参数的可信度,提出一种根据单个客户每一轮对全局模型的历史贡献动态提升或惩罚单个客户端的信誉方案 |
阅读记录
总结
针对标签翻转攻击+后门数据投毒攻击+女巫攻击:
- 由于局部数据分布的动态性,客户端的局部目标和全局目标的方向可能不会很好地对齐。在有目标投毒攻击中,恶意客户端的目标是将具有特定特征的数据分类到目标类中,所以其更新接近于恶意目标的方向,而不是全局目标的方向,又因为恶意客户端具有相同的中毒目标,因此任意两个恶意更新之间的角度总是小于恶意更新与良性更新的角度、任意两个良性更新之间的角度。