论文名称 | DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep Model Inspection |
---|---|
作者 | P. Rieger, T. D. Nguyen, Markus Miettinen, A. Sadeghi |
来源 | NDSS 2022 |
领域 | Machine Learning - Federal learning - Security – Backdoor attack |
问题 | 已有的防御方式:1.旨在检测和删除中毒模型:无法区分在不同数据分布的良性训练数据上训练的模型和中毒模型;2.旨在限制中毒模型的影响:不能有效地对抗具有高攻击影响的中毒模型更新 |
方法 | 检查神经网络的内部结构和输出, 将基于聚类的过滤方案与裁剪相结合,以识别具有高攻击影响的恶意更新,同时保持来自不同数据分布的良性模型更新 |
阅读记录