READ-2349 DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep Model Inspection

论文名称 DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep Model Inspection
作者 P. Rieger, T. D. Nguyen, Markus Miettinen, A. Sadeghi
来源 NDSS 2022
领域 Machine Learning - Federal learning - Security – Backdoor attack
问题 已有的防御方式:1.旨在检测和删除中毒模型:无法区分在不同数据分布的良性训练数据上训练的模型和中毒模型;2.旨在限制中毒模型的影响:不能有效地对抗具有高攻击影响的中毒模型更新
方法 检查神经网络的内部结构和输出, 将基于聚类的过滤方案与裁剪相结合,以识别具有高攻击影响的恶意更新,同时保持来自不同数据分布的良性模型更新

阅读记录

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值