FL Backdoor Defense (Ⅱ) - DeepSight

DeepSight算法通过结合模型更新检测剔除和裁剪,防御后门攻击。利用Diffs、NEUPs和Threshold Exceeding进行聚类分析,区分恶意和良性模型更新,并通过HDCSCAN聚类算法实现有效防御。裁剪模块对良性更新进行聚合,提高全局模型主任务准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文笔记 - DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep Model Inspection

1. 基本信息

论文标题 DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep Model Inspection
论文作者 Phillip Rieger, Thien Duc Nguyen, Markus Miettinen, Ahmad-Reza Sadeghi
科研机构 Technical University of Darmstadt
录用会议 NDSS 2022
摘要概括 现有的抵御联邦学习后门攻击算法通常表现在中心服务器排除偏离正常范围的模型更新。但是这些方法会排除偏离正常范围的良性模型更新导致全局模型性能下降。为了解决此类问题,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值