一、集合的基本概念
1.集合与元素
集合:是有确定的对象(客体)构成的集体。用大写的英文字母表示。
元素:集合中的对象
2.集合的表示法
列举法:将集合中的元素一一列出,写在大括号中
N={1,2,3,4,……}
描述法:用句子(或谓词公式描述元素属性)
B = {x | x是偶数}
说明:(1)集合中的元素次序无关紧要,但是必须是可相互区分的。
(2)对集合中的元素无任何限制
(3)常用的几个集合符号的约定 自然数集N,整数集I ,实数集R,有理数集Q
(4)集合中的元素也可以是集合
二、集合间的关系
1.包含关系:A、B是集合,如果A中元素都是B中元素,则称B包含A,A包含于B,也称A是B的子集
性质:(1)有自反性
(2)有传递性
(3)有反对称性
2.相等关系:A、B是集合,如果他们的元素完全相同,则称A与B相等,记作A=B
性质:
(1)有自反性
(2)有传递性
(3)有对称性
3.真包含关系:A、B是集合,如果A属于B且A不等于B,则称B真包含A,也称A是B的真子集
性质:传递性
特殊集合
1.全集E:包含所讨论的所有集合的集合,就称之为全集,记作E,实际上就是论域
2.空集:没有元素的集合