集合论的部分知识

一、集合的基本概念

1.集合与元素

集合:是有确定的对象(客体)构成的集体。用大写的英文字母表示。

元素:集合中的对象

2.集合的表示法

列举法:将集合中的元素一一列出,写在大括号中

N={1,2,3,4,……}

描述法:用句子(或谓词公式描述元素属性)

B = {x | x是偶数}

说明:(1)集合中的元素次序无关紧要,但是必须是可相互区分的。

(2)对集合中的元素无任何限制

(3)常用的几个集合符号的约定 自然数集N,整数集I ,实数集R,有理数集Q

(4)集合中的元素也可以是集合

二、集合间的关系

1.包含关系:A、B是集合,如果A中元素都是B中元素,则称B包含A,A包含于B,也称A是B的子集

性质:(1)有自反性

(2)有传递性

(3)有反对称性

2.相等关系:A、B是集合,如果他们的元素完全相同,则称A与B相等,记作A=B

性质:

(1)有自反性

(2)有传递性

(3)有对称性

3.真包含关系:A、B是集合,如果A属于B且A不等于B,则称B真包含A,也称A是B的真子集

​ 性质:传递性

特殊集合

1.全集E:包含所讨论的所有集合的集合,就称之为全集,记作E,实际上就是论域

2.空集:没有元素的集合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值