个性化推荐系统需要具备高可用性、高并发性和可扩展性。因此,需要设计一个合理的系统架构来支持这些需求。使用Java Script结合Layui作为前端框架,利用其组件化开发特性实现前端页面灵活性和可扩展性。使用Echarts实现销售金额的统计,使用Spring Boot作为后端框架。采用MySQL主从复制的方式来保证数据库的高可用性和数据一致性。系统通过Shiro安全框架来进行用户的登录身份验证等。系统总体架构如图所示:
个性化推荐模块在系统首页对不同的用户展示的个性化推荐的商品款式,是根据与该用户兴趣相似的其他用户的手机加购情况、收藏情况以及购买情况等来给对应的用户推荐他可能感兴趣的手机。计算相似度需要根据数据特点的不同选择不同的相似度计算算法,通常使用的是夹角余弦计算。协同过滤算法分为基于用户的协同过滤算法和基于物品的协同过滤算法,通常使用的是基于用户的协同过滤算法,下面简单介绍一下。
个性化推荐流程:
通过GoodsController去调用手机商品服务,控制器和服务器之间通过接口GoodsService调用,这也符合设计模式里的接口隔离原则,减低类与类之间的耦合性。IGoodsService接口实现类GoodsSer