一、矩阵
1、矩阵的基本形式
2、行列式
3、转置
4、矩阵的一般运算
5、哈马达乘积
二、向量【向量为行数或列数为1的特殊矩阵】
1、向量的基本格式
2、向量的点乘
3、向量的范数
三、距离度量【来衡量两个图片特征向量的相似性,从而得以衡量两张图片的相似性】
【余弦距离是非常常用的衡量向量之间距离的公式,常用于人脸识别特征相似度度量中】
四、卷积
卷积的通常意义是加权求和,其中权值矩阵称为加权模板或卷积核或滤波器。通过不同的卷积核,可以实现对图像的模糊处理,边缘检测,图像分割等。因为图像为离散信号,故接触到的卷积为离散卷积。一维卷积常用于自然语言处理和序列模板。二维卷积主要应用于计算机视觉领域。