平衡树学习笔记之 fhq Treap

平衡树学习笔记 1:fhq Treap(非旋 Treap)

正文开始前首先 %%% fhq 大佬。

众所周知,平衡树是一种 非常猥琐 码量堪忧的数据结构。
他的祖先是一种叫做二叉搜索树 ( B S T BST BST ) 的东东。
话说二叉搜索树是个什么玩意呢?

二叉搜索树:

显而易见,这是一棵二叉树 (),它的每个节点上有一个需要我们维护的值,我们称为“关键码”
然后这棵树的中序遍历是一个关于关键码的一个严格单调递增序列 (假设没有重复的元素) 是有序的。
然后就没了。
当然我们可以用这玩意来搞很多非常 恶心 有用的东西。

平衡树:

根据二叉搜索树的性质,我们可以递归查询每一个点的排名,排名为 k 的点,还可以支持动态插入,删除某个数,它的每次操作的 期望复杂度 O ( l o g   n ) O(log~n) O(log n)因为一棵随机生成的BST的深度期望是 l o g    n log~~n log  n

但是我们操作二叉搜索树的时候发现了一些奇妙的东西:
比如说看这两张图:
在这里插入图片描述
在这里插入图片描述
显然前面这棵树它看起来更优一点,最后跑起来会比较快。
然后看一看极端数据,真是令人不寒而栗
在这里插入图片描述
你告诉我这和一条链有什么区别?
那么当你构造的BST 变成最后一个图这样,那你每次操作的复杂度最坏会达到 O ( n ) O(n) O(n)
当然,我们发现有同样的BST 和这条链等效。
在这里插入图片描述
这两者是等效的,很明显后者得每次操作比前者更快,它的深度小。
所以我们把后者称为平衡树。
那么怎么维护一棵BST呢?

fhq Treap (非旋 Treap)

众所周知,有一种简单易懂的平衡树叫做 Treap,它在每一个点上弄了一个附加权值,这些附加权值满足 的性质,而维护的权值满足 BST 的性质。
Treap 是使用旋转操作来维护堆的性质的,但是我这个人真心菜,被绕的晕晕乎乎的。
然后看到了 fhq 非旋 treap,感觉简单易懂,操作思路清晰,功能强大跑的还不慢,
就愉快的去学了一下。
一般的 treap 的附加权值是怎么搞得?怎么样才能使树平衡呢?
当然是:随机!!!
所以fhq treap 借用了 treap 的随机化思想,只用了两个基本操作就能实现一般平衡树的所有操作。

基本操作1:分裂 (split)

它的主要思想就是把一个Treap分成两个。
split 操作有两种类型,一种是按照权值分配,一种是按前k个(数量)分配。
第一种就是把所有小于k的权值的节点分到一棵树中,第二种是把前k个点分到一个树里。
放上代码

权值版:

void split(ll now,ll k,ll &x,ll &y) //将以now为根的树按照 k 分裂为根为x,y的两部分
{
	if(now==0) x=y=0; //节点为空
	else
	{
		if(val[now]<=k) // 当前节点的值比 k 小,那么他的左子树上的所有值也一定比 k 小
		{
			x=now; //根节点成为现在的节点
			split(rc[now],k,rc[now],y); //递归看右子树
		}
		else // 同理
		{
			y=now;
			split(lc[now],k,x,lc[now]);
		}
		update(now); //更新答案
	}
}

对于我们遍历到每一个点,假如它的权值小于k,那么它的所有左子树,都要分到左边的树里,然后遍历它的右儿子。假如大于k,把它的所有右子树分到右边的树里,遍历左儿子。
一般我们用的比较多的是权值版。

前 k 个的版本:
有点像主席树找第 k 大的代码。

void split(ll now,ll k,ll &x,ll &y) //将以now为根的树按照前 k 个点分裂为根为x,y的两部分
{
	if(now==0) x=y=0; //节点为空
	else
	{
		if(siz[now]+1<=k) //这里的siz后面写成了f
		{
			x=now; //根节点成为现在的节点
			split(rc[now],k-siz[now]-1,rc[now],y); //递归看右子树
			//k要减去左子树记录的个数
		}
		else // 同理
		{
			y=now;
			split(lc[now],k,x,lc[now]);
		}
		update(now); //更新答案
	}
}

基本操作2:合并( merge )

将split分开的两棵平衡树 treap 合并起来。
因为第一个Treap的权值都比较小,我们比较一下它的 pos (附加权值),假如第一个的 pos 小,我们就可以直接保留它的所有左子树,接着把第一个 Treap 变成它的右儿子。反之,我们可以保留第二棵的所有右子树,指针指向左儿子。
你可以把这个过程形象的理解为在第一个Treap的左子树上插入第二个树,也可以理解为在第二个树的左子树上插入第一棵树。因为第一棵树都满足小于第二个树,所以就变成了比较pos来确定树的形态。
(转自 远航之曲 大佬)
代码很简洁:

ll make(ll x,ll y)
{
	if(x==0||y==0) return x+y; //返回其中有数的那棵树
	if(pos[x]<pos[y]) //pos 指的是优先级
	{
		rc[x]=make(rc[x],y);
		update(x);
		return x;
	}
	else 
	{
		lc[y]=make(x,lc[y]);
		update(y);
		return y;
	}
}

然后还有一堆平衡树的日常操作:

插入:

插入一个权值为v的点,把树按照v的权值split成两个,再按照顺序合并回去。

split(root,v,x,y);
root=make(make(x,getnew(v)),y);

删除:

稍微麻烦一点。
删除权值为v的点,把树按照v分成两个a,b,再把a按照v-1分成c,d。
把c的两个子儿子合并起来 (这时候那个点已经被删除了),再 m e r g e ( m e r g e ( c , d ) , b ) merge(merge(c,d),b) merge(merge(c,d),b),把分开的树合并回去。
有点绕自己好好理解。

split(root,v,x,z);
split(x,v-1,x,y);
y=make(lc[y],rc[y]);
root=make(make(x,y),z);

查找排名为 k 的数:

ll find(ll now,ll k) //now是树的根节点
{
	while(1+1==2)//c++划水写法
	{
		if(k<=f[lc[now]]) now=lc[now]; //比左子树要小
		else if(k==f[lc[now]]+1) return now;  //=左子树比他小的+1
		else k-=(f[lc[now]]+1),now=rc[now]; 
	}
}

查找前驱:

把root按v-1 split成x,y,在x里面找最大值。

split(root,v-1,x,y);
put(val[find(x,f[x])]); //1~v-1中最大的那个,也就是第f[x]的那个
root=make(x,y);

查找后继:

把root按 v split 成x,y,在y里面找最小值。

split(root,v,x,y);
put(val[find(y,1)]); //v+1~n 中的最小值
root=make(x,y);

查找 v 的排名:

把root按 v-1 split 成x,y,x 的 siz 大小+1

split(root,v-1,x,y);
put(f[x]+1); //左边都比现在的值小
root=make(x,y);

注意,对于在主函数中执行的 split 一般后面都会跟着相同数量的 merge (我写的是 make )

代码:

【洛谷 P3369】 普通平衡树

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<ctime>
#include<cstring>
#define r register
#define rep(i,x,y) for(r ll i=x;i<=y;++i)
#define per(i,x,y) for(r ll i=x;i>=y;--i)
using namespace std;
typedef long long ll;
const ll V=5e5+10;
ll t,x,y,k,z;
ll in()
{
	ll res=0,f=1;
	char ch;
	while((ch=getchar())<'0'||ch>'9')
	 if(ch=='-') f=-1;
	res=res*10+ch-48;
	while((ch=getchar())>='0'&&ch<='9')
	 res=res*10+ch-48;
	return res*f;
}
void put(ll x)
{
	if(x<0) putchar('-'),x*=-1;
	if(x>9) put(x/10);
	putchar(x%10+48);
}
ll lc[V],rc[V],val[V],f[V],pos[V];
ll cnt,opt,v,root;
void update(ll x)
{
	f[x]=f[lc[x]]+f[rc[x]]+1;
}
void split(ll now,ll k,ll &x,ll &y)
{
	if(now==0) x=y=0;
	else
	{
		if(val[now]<=k)
		{
			x=now;
			split(rc[now],k,rc[now],y);
		}
		else 
		{
			y=now;
			split(lc[now],k,x,lc[now]);
		}
		update(now);
	}
}
ll make(ll x,ll y)
{
	if(x==0||y==0) return x+y;
	if(pos[x]<pos[y])
	{
		rc[x]=make(rc[x],y);
		update(x);
		return x;
	}
	else 
	{
		lc[y]=make(x,lc[y]);
		update(y);
		return y;
	}
}
ll getnew(ll x)
{
	f[++cnt]=1;
	val[cnt]=x;
	pos[cnt]=rand()%1000000000+10;
	return cnt;
}
ll find(ll now,ll k)
{
	while(1+1==2)
	{
		if(k<=f[lc[now]]) now=lc[now];
		else if(k==f[lc[now]]+1) return now;
		else k-=(f[lc[now]]+1),now=rc[now];
	}
}
int main()
{
	srand(time(NULL)); //论随机化种子的重要性
	t=in();
	while(t--)
	{
		opt=in(),v=in();
		if(opt==1)
		{
			split(root,v,x,y);
			root=make(make(x,getnew(v)),y);
		}
		else if(opt==2)
		{
			split(root,v,x,z);
			split(x,v-1,x,y);
			y=make(lc[y],rc[y]);
			root=make(make(x,y),z);
		}
		else if(opt==3)
		{
			split(root,v-1,x,y);
			put(f[x]+1);
			putchar(10);
			root=make(x,y);
		}
		else if(opt==4) put(val[find(root,v)]),putchar(10);
		else if(opt==5)
		{
			split(root,v-1,x,y);
			put(val[find(x,f[x])]);
			root=make(x,y);
			putchar(10); 
		}
		else 
		{
			split(root,v,x,y);
			put(val[find(y,1)]);
			root=make(x,y);
			putchar(10); 
		}
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
可持久化splay是一种数据结构,它是对splay树进行修改和查询的一种扩展。在传统的splay树中,对树的修改操作会破坏原有的树结构,而可持久化splay树则允许我们对树进行修改、查询,并且可以保存修改后的每个版本的树结构。 在可持久化splay树中,我们不会直接对原树进行修改,而是通过复制每个节点来创建新的版本。这样,每个版本都可以独立地修改和查询,保留了原有版本的结构和状态。每个节点保存了其左子树和右子树的引用,使得可以在不破坏原有版本的情况下进行修改和查询。 为了实现可持久化splay树,我们可以使用一些技巧,比如引用中提到的哨兵节点和假的父节点和孩子节点。这些技巧可以帮助我们处理根节点的旋转和其他操作。 此外,可持久化splay树还可以与其他数据结构相结合,比如引用中提到的可持久化线段树。这种结合可以帮助我们解决更复杂的问题,比如区间修改和区间查询等。 对于可持久化splay树的学习过程,可以按照以下步骤进行: 1. 理解splay树的基本原理和操作,包括旋转、插入、删除和查找等。 2. 学习如何构建可持久化splay树,包括复制节点、更新版本和保存历史版本等。 3. 掌握可持久化splay树的常见应用场景,比如区间修改和区间查询等。 4. 深入了解与可持久化splay树相关的其他数据结构和算法,比如可持久化线段树等。 在解决问题时,可以使用二分法来确定答案,一般称为二分答案。通过对答案进行二分,然后对每个答案进行检查,以确定最终的结果。这种方法可以应用于很多问题,比如引用中提到的在线询问问题。 综上所述,可持久化splay是一种对splay树进行修改和查询的扩展,可以通过复制节点来创建新的版本,并且可以与其他数据结构相结合解决更复杂的问题。学习过程中可以按照一定的步骤进行,并且可以使用二分法来解决一些特定的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [[学习笔记]FHQ-Treap及其可持久化](https://blog.csdn.net/weixin_34283445/article/details/93207491)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [可持久化数据结构学习笔记](https://blog.csdn.net/weixin_30376083/article/details/99902410)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值