算法提高--数据结构--并查集例题(3)

算法提高–数据结构–并查集例题–程序自动分析

题目描述:

在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。考虑一个约束满足问题的简化版本:假设 x1,x2,x3,…代表程序中出现的变量,给定 n 个形如 xi=xj 或 xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。
例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x1≠x4,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。
现在给出一些约束满足问题,请分别对它们进行判定。

输入格式:

输入文件的第 1 行包含 1 个正整数 t,表示需要判定的问题个数,注意这些问题之间是相互独立的。对于每个问题,包含若干行:
第 1行包含 1 个正整数 n,表示该问题中需要被满足的约束条件个数。接下来 n行,每行包括 3 个整数 i,j,e,描述 1 个相等/不等的约束条件,相邻整数之间用单个空格隔开。若 e=1,则该约束条件为 xi=xj;若 e=0,则该约束条件为 xi≠xj。

输出格式:

输出文件包括 t行。输出文件的第 k行输出一个字符串 YES 或者 NO,YES 表示输入中的第 k 个问题判定为可以被满足,NO 表示不可被满足。

数据范围:

1≤n≤105
1≤i,j≤109

样例:

2
2
1 2 1
1 2 0
2
1 2 1
2 1 1

NO
YES

解题思路:

想要判断是否有矛盾其实非常简单,只要把所有相同的变量放在一个集合内,在一个一个判断不相等的变量是否在一个集合,如果在则矛盾。这题唯一的问题是变量的大小是1e9,需要离散化。

#include<iostream>
#include<algorithm>
#include<cstring>
#include<map>

using namespace std;

const int N = 1e5 + 10;

map<int, int> S;

int n, m;
int p[N << 1];

struct Node{
	int x, y, e;
}query[N];

int find(int x)
{
	if(x == p[x]) return x;
	return p[x] = find(p[x]);
}

int get(int x)
{
	if(S.count(x) == 0) S[x] = ++ n;
	return S[x];
}

int main()
{
	int t;
	scanf("%d", &t);
	while(t -- )
	{
		n = 0;
		S.clear();
		scanf("%d", &m);
		for(int i = 1; i <= m; i ++ )
		{
			int a, b, e;
			scanf("%d%d%d", &a, &b, &e);
			query[i] = {get(a), get(b), e};
		}
		
		for(int i = 1; i <= n; i ++ ) p[i] = i;
		
		for(int i = 1; i <= m; i ++ )
		{
			int a = find(query[i].x), b = find(query[i].y), e = query[i].e;
			if(e == 1) p[a] = b;
		}
		
		bool has_conflict = false;
		for(int i = 1; i <= m; i ++ )
		{
			int a = find(query[i].x), b = find(query[i].y), e = query[i].e;
			if(e == 0)
			{
				if(a == b){
					has_conflict = true;
					break;
				} 
			}
		}
		
		if(has_conflict) puts("NO");
		else puts("YES");
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炎心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值