算法提高–数据结构–并查集例题–程序自动分析
题目描述:
在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。考虑一个约束满足问题的简化版本:假设 x1,x2,x3,…代表程序中出现的变量,给定 n 个形如 xi=xj 或 xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。
例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x1≠x4,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。
现在给出一些约束满足问题,请分别对它们进行判定。
输入格式:
输入文件的第 1 行包含 1 个正整数 t,表示需要判定的问题个数,注意这些问题之间是相互独立的。对于每个问题,包含若干行:
第 1行包含 1 个正整数 n,表示该问题中需要被满足的约束条件个数。接下来 n行,每行包括 3 个整数 i,j,e,描述 1 个相等/不等的约束条件,相邻整数之间用单个空格隔开。若 e=1,则该约束条件为 xi=xj;若 e=0,则该约束条件为 xi≠xj。
输出格式:
输出文件包括 t行。输出文件的第 k行输出一个字符串 YES 或者 NO,YES 表示输入中的第 k 个问题判定为可以被满足,NO 表示不可被满足。
数据范围:
1≤n≤105
1≤i,j≤109
样例:
2
2
1 2 1
1 2 0
2
1 2 1
2 1 1
NO
YES
解题思路:
想要判断是否有矛盾其实非常简单,只要把所有相同的变量放在一个集合内,在一个一个判断不相等的变量是否在一个集合,如果在则矛盾。这题唯一的问题是变量的大小是1e9,需要离散化。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<map>
using namespace std;
const int N = 1e5 + 10;
map<int, int> S;
int n, m;
int p[N << 1];
struct Node{
int x, y, e;
}query[N];
int find(int x)
{
if(x == p[x]) return x;
return p[x] = find(p[x]);
}
int get(int x)
{
if(S.count(x) == 0) S[x] = ++ n;
return S[x];
}
int main()
{
int t;
scanf("%d", &t);
while(t -- )
{
n = 0;
S.clear();
scanf("%d", &m);
for(int i = 1; i <= m; i ++ )
{
int a, b, e;
scanf("%d%d%d", &a, &b, &e);
query[i] = {get(a), get(b), e};
}
for(int i = 1; i <= n; i ++ ) p[i] = i;
for(int i = 1; i <= m; i ++ )
{
int a = find(query[i].x), b = find(query[i].y), e = query[i].e;
if(e == 1) p[a] = b;
}
bool has_conflict = false;
for(int i = 1; i <= m; i ++ )
{
int a = find(query[i].x), b = find(query[i].y), e = query[i].e;
if(e == 0)
{
if(a == b){
has_conflict = true;
break;
}
}
}
if(has_conflict) puts("NO");
else puts("YES");
}
return 0;
}