二分类神经网络

1 二分类神经网络结构

NN

图1.1 神经网络结构

NN1

图1.2 输入层-隐藏层

NN2

图1.3 隐藏层-输出层

NN3

图1.4 输出-激活

2 源码及解析

import tensorflow as tf
from numpy.random import RandomState 

#每批训练数据的量(多少)
batch_size = 8
#权重
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))
#输入
x = tf.placeholder(tf.float32, shape=(None,2), name='x-input')
y_ = tf.placeholder(tf.float32, shape=(None,1), name='y-input')
#前向传播
a = tf.matmul(x,w1)
y = tf.matmul(a,w2)
#反向传播--激活函数
y = tf.sigmoid(y)
#反向传播--损失函数
cross_entropy = -tf.reduce_mean(y_*tf.log(tf.clip_by_value(y, 1e-10,1.0))
    +(1-y)*tf.log(tf.clip_by_value(1-y,1e-10,1.0)))
#优化
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
#实验--模拟数据128x2维
rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size, 2)
Y = [[int(x1+x2 < 1)] for (x1, x2) in X]
#创建会话
with tf.Session() as sess:
    #初始化变量
    init_op = tf.global_variables_initializer()
    sess.run(init_op)
    #设定训练次数
    STEPS = 9000
    for i in range(STEPS):
        #批量训练:batch_size
        start = (i * batch_size)%dataset_size
        end = min(start+batch_size, dataset_size)
        #更新参数
        sess.run(train_step,
            feed_dict={x: X[start:end], y_: Y[start:end]})
        #定期输出
        if i % 1000 ==0:
            #计算交叉熵
            total_cross_entropy = sess.run(
                cross_entropy, feed_dict={x:X, y_:Y})
            print("After %d  training step(s), cross_entropy on all data is %g" 
                %(i, total_cross_entropy))
    print("Final w1=", sess.run(w1))
    print("Final w2=", sess.run(w2))

3 结果及分析

在这里插入图片描述

图3.1 运行结果

通过8000轮的训练,交叉熵的值逐渐减小,表明预测值和实际值误差逐渐减小,预测更加准确。初始权重Init w1和Init w2在神经网络的训练过程中,发生变化,最终输出训练结果,最终权重Final w1和Final w2。

4 总结

神经网络训练过程

  • 1.定义神经网络结构及前向传播结果;
  • 2.定义损失函数及选择反向传播优化算法;
  • 3.定义会话,训练。

[拓展阅读]
[1]神经网络之Tensorflow函数解析

好的,我可以为您提供一些关于Python编写二分类神经网络的基本思路和代码示例。 首先,您需要导入所需的Python库,包括Numpy、Pandas和Keras。然后,您需要加载您的数据集,将其分为训练集和测试集,并对其进行预处理(例如,归一化或标准化)。 接下来,您需要定义您的模型架构。对于二分类问题,您可以使用一些常见的神经网络架构,例如多层感知机(MLP)或卷积神经网络(CNN)。在此示例中,我们将使用MLP。 以下是一个简单的二分类神经网络的Python代码示例: ```python import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense # 加载数据集 dataset = pd.read_csv('your_dataset.csv') X = dataset.iloc[:, :-1].values y = dataset.iloc[:, -1].values # 数据预处理 # ... # 定义模型 model = Sequential() model.add(Dense(units=16, activation='relu', input_dim=X.shape[1])) model.add(Dense(units=8, activation='relu')) model.add(Dense(units=1, activation='sigmoid')) # 编译模型 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(X_train, y_train, batch_size=32, epochs=100, validation_data=(X_test, y_test)) # 评估模型 loss, accuracy = model.evaluate(X_test, y_test) print('Test accuracy:', accuracy) ``` 在这个示例中,我们使用了一个包含两个隐藏层的MLP模型,使用ReLU激活函数和Sigmoid激活函数输出二分类结果。我们使用Adam优化器和二元交叉熵损失函数来训练模型,并使用验证集来进行模型评估。 请注意,这只是一个简单的示例,您可以根据您的需求进行调整和修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天然玩家

坚持才能做到极致

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值