1 二分类神经网络结构
2 源码及解析
import tensorflow as tf
from numpy.random import RandomState
#每批训练数据的量(多少)
batch_size = 8
#权重
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))
#输入
x = tf.placeholder(tf.float32, shape=(None,2), name='x-input')
y_ = tf.placeholder(tf.float32, shape=(None,1), name='y-input')
#前向传播
a = tf.matmul(x,w1)
y = tf.matmul(a,w2)
#反向传播--激活函数
y = tf.sigmoid(y)
#反向传播--损失函数
cross_entropy = -tf.reduce_mean(y_*tf.log(tf.clip_by_value(y, 1e-10,1.0))
+(1-y)*tf.log(tf.clip_by_value(1-y,1e-10,1.0)))
#优化
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
#实验--模拟数据128x2维
rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size, 2)
Y = [[int(x1+x2 < 1)] for (x1, x2) in X]
#创建会话
with tf.Session() as sess:
#初始化变量
init_op = tf.global_variables_initializer()
sess.run(init_op)
#设定训练次数
STEPS = 9000
for i in range(STEPS):
#批量训练:batch_size
start = (i * batch_size)%dataset_size
end = min(start+batch_size, dataset_size)
#更新参数
sess.run(train_step,
feed_dict={x: X[start:end], y_: Y[start:end]})
#定期输出
if i % 1000 ==0:
#计算交叉熵
total_cross_entropy = sess.run(
cross_entropy, feed_dict={x:X, y_:Y})
print("After %d training step(s), cross_entropy on all data is %g"
%(i, total_cross_entropy))
print("Final w1=", sess.run(w1))
print("Final w2=", sess.run(w2))
3 结果及分析
通过8000轮的训练,交叉熵的值逐渐减小,表明预测值和实际值误差逐渐减小,预测更加准确。初始权重Init w1和Init w2在神经网络的训练过程中,发生变化,最终输出训练结果,最终权重Final w1和Final w2。
4 总结
神经网络训练过程
- 1.定义神经网络结构及前向传播结果;
- 2.定义损失函数及选择反向传播优化算法;
- 3.定义会话,训练。
[拓展阅读]
[1]神经网络之Tensorflow函数解析