【医学顶刊TMI 2025】Mamba-Sea:一种基于 Mamba 的框架,结合全局到局部序列增强的可推广医学图像分割方法

在这里插入图片描述

作者:Zihan Cheng, Jintao Guo, Jian Zhang, Lei Qi, Luping Zhou, Yinghuan Shi*, Yang Gao
📜 代码地址:https://github.com/orange-czh/Mamba-Sea


✨ 摘要

  • 背景:医疗图像分割在存在分布差异(domain shift)时面临挑战。
  • 问题:现有DG方法多基于CNN或ViT,存在局限。
  • 方法:提出 Mamba-Sea,引入 Global-to-Local Sequence Augmentation (GLA)
  • 亮点
    • GVA:全局模拟外观变化
    • LSA:局部连续子序列风格扰动
  • 成果:首次在Prostate数据集Dice超过90%,刷新SOTA。

1. 🚀 引言

  • 传统模型基于 i.i.d 假设,但实际存在大规模分布漂移。
  • CNN局限:仅能学习局部纹理。
  • ViT局限:全局感受野,计算量大。
  • Mamba优势:长程依赖建模 + 线性复杂度。

2. 📚 相关工作

2.1 🌍 医疗图像分割中的Domain Generalization

  • Meta-learning方法(如MASF、FedDG)
  • 数据增强方法(如BigAug、DoFE)
  • 特征对齐方法(如RAM-DSIR、DCAC)

2.2 🛠 Mamba在医学图像分割中的应用

  • Mamba-UNet、SegMamba、VM-UNetV2
  • 现有方法未考虑 Domain Shift

3. 🏗 方法

3.1 🔥 总览

Mamba-Sea总体流程:

  1. GVA全局外观增强
  2. 送入带有LSA模块的VM-UNet
  3. 语义一致性训练

3.2 🛡 关键模块

在这里插入图片描述


🖼 图2:Mamba-Sea整体框架示意图解释

这张图分为四大模块,分别是:(a) GVA模块、(b) 语义一致性训练、© VSSDG模块、(d) LSA局部增强模块。


(a) GVA模块 - Global Variation Augmentation 🌍

  • 输入:从多个不同来源(Domain 1, Domain 2, …, Domain K)的原始图像。
  • 流程
    • 经过 Gating机制:判断是否需要进行增强(比如亮度过低则增强)。
    • 若需要增强,进入一个由卷积层+BatchNorm+激活(Sigmoid)组成的小网络。
    • 输出:生成增强后的图像(整体外观有变化,比如亮度、对比度改变)。
  • 目的:在全局级别模拟不同医院/设备造成的图像外观变化,提升泛化能力。

(b) 语义一致性训练 - Semantic Consistency Training 🎯

  • 输入
    • 原始图像
    • GVA增强后的图像
  • 流程
    • 两种图像同时送入 SSM-based分割网络(基于VM-UNet)。
    • 得到两个分割预测结果。
  • 损失函数
    • L_seg:分割任务的基本损失(比如Dice loss, Cross-Entropy loss)。
    • L_consist一致性损失,鼓励增强前后预测保持一致。
  • 目的:使模型输出对输入扰动更鲁棒,从而进一步提升跨域泛化能力。

© VSSDG模块 - Selective Scanning with Local Augmentation ⚙️

  • 这是 网络内部的特征处理模块
  • 原本是Selective State Space Block (SS Block),这里被改进:
    • 加入了**LSA(Local Style Augmentation)**模块,作为新的路径。
  • 结构细节:
    • 多个Linear Layer + Depthwise-Conv(DW-Conv)
    • 多次LayerNorm标准化
    • 通过Hadamard乘积和加法整合不同特征
  • 目的:在局部token建模时,引入风格扰动,打破过拟合,增强域内变化的适应性。

(d) LSA模块 - Local Sequence-wise Style Transformation 🧩

  • 位置:插入到VSSDG模块内部。
  • 流程
    1. Scan Expanding:把图像特征展开成序列。
    2. Style Augmentations:对每个序列进行风格统计扰动(均值、方差加噪声)。
    3. Sequence-wise Mixup:连续地混合原始序列和增强序列(而不是随机单点扰动)。
    4. Scan Merging:重新组合成图像特征。
  • 目的:在局部级别模拟风格变化,帮助模型学到更稳定、更有语义的特征。

🔥 总结一张话

模块作用目标
(a) GVA整体外观增强模拟不同医院采集条件
(b) 语义一致性训练保持增强前后输出一致抗扰动泛化
© VSSDG改良版SSM模块融合局部增强
(d) LSA局部子序列风格扰动对局部变化更鲁棒

4. 🧪 实验

4.1 🗂 数据集

  • Fundus(眼底)数据集
  • Prostate(前列腺MRI)数据集
  • Skin Lesion(大规模皮肤病变分割)

4.2 🏆 主要结果

方法Fundus Dice ↑Prostate Dice ↑Skin Lesion Dice ↑
Baseline (VM-UNet)86.90%87.56%90.78%
Mamba-Sea (Ours)89.68%90.02%93.11%
  • 在所有任务上,Mamba-Sea大幅提升,尤其是在Skin Lesion任务上取得了新SOTA

4.3 🧩 消融实验

模块组合Fundus Dice ↑Prostate Dice ↑
去除GVA87.84%87.72%
去除LSA88.65%88.79%
全部保留(Mamba-Sea)89.68%90.02%
  • GVA和LSA模块均带来明显提升。

4.4 📈 进一步分析

  • t-SNE分析显示,Mamba-Sea能极大缩小不同域之间的特征分布距离。
  • Hyperparameter分析表明模型对参数变化不敏感,稳定性好。
  • 统计显著性测试(paired t-test)确认性能提升有效(p < 0.05)。

5. 🧠 讨论与结论

  • 总结:首次探索Mamba在Domain Generalization中的潜力,提出有效的全局到局部序列增强策略。
  • 未来方向:结合更复杂的序列建模机制、进一步提升Mamba在医学领域的普适性。
### 关于2024年医学图像分割领域顶级会议和期刊发表的文献 在寻找2024年关于医学图像分割领域的顶级会议和期刊论文时,可以关注以下几个方向: #### 1. **顶级国际会议** 以下是几个专注于人工智能、机器学习以及医学影像分析的顶级国际会议,这些会议通常会发布最新的研究成果: - **Medical Image Computing and Computer-Assisted Intervention (MICCAI)** MICCAI 是医学图像计算和计算机辅助干预领域的旗舰会议之一。它涵盖了广泛的医学成像技术及其应用,尤其是在图像分割方面有大量高质量的研究成果[^1]。 - **International Conference on Medical Imaging with Deep Learning (MIDL)** MIDL 致力于推动深度学习医学成像中的应用研究,是一个新兴但极具影响力的会议。该会议特别注重基于深度学习方法来解决医学图像分割等问题[^3]。 - **Conference on Neural Information Processing Systems (NeurIPS)** NeurIPS 虽然不是专门针对医学图像的会议,但它经常接收有关医疗数据处理(包括图像分割)的前沿工作。特别是涉及卷积稀疏编码等技术的应用可能在此类会议上有所体现[^2]。 #### 2. **顶级学术期刊** 对于更深入的技术细节和技术验证,可以通过阅读以下几本顶尖期刊的文章获得启发: - **IEEE Transactions on Medical Imaging (TMI)** TMI 提供了一个平台用于展示先进的理论发展及其实验结果,特别是在医学图像重建、配准、分割等方面的工作非常突出。 - **Nature Machine Intelligence** 和 **Nature Biomedical Engineering** 这些跨学科性质较强的杂志也常刊载利用最新AI算法改进传统生物医学工程流程的重要发现,比如如何提高MRI或CT扫描下的病变区域自动识别精度等内容。 #### 示例代码片段:检索相关文献 如果希望通过编程方式自动化获取上述资源的信息,则可考虑使用Python脚本配合API接口实现如下功能: ```python import requests def fetch_papers(conference_name="MICCAI", year=2024): url = f"https://api.example.com/papers?conference={conference_name}&year={year}" response = requests.get(url) if response.status_code == 200: data = response.json() for paper in data['papers']: title = paper['title'] authors = ", ".join(paper['authors']) abstract = paper['abstract'][:150] + "..." print(f"Title: {title}\nAuthors: {authors}\nAbstract: {abstract}\n---\n") else: print("Failed to retrieve papers.") fetch_papers() # 默认查询MICCAI 2024年的文章 ``` 此函数调用了假设存在的外部API服务以返回指定条件匹配到的一系列科研报告列表摘要形式输出给用户查看参考之用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吾在学习路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值