作者:Zihan Cheng, Jintao Guo, Jian Zhang, Lei Qi, Luping Zhou, Yinghuan Shi*, Yang Gao
📜 代码地址:https://github.com/orange-czh/Mamba-Sea
✨ 摘要
- 背景:医疗图像分割在存在分布差异(domain shift)时面临挑战。
- 问题:现有DG方法多基于CNN或ViT,存在局限。
- 方法:提出 Mamba-Sea,引入 Global-to-Local Sequence Augmentation (GLA)。
- 亮点:
- GVA:全局模拟外观变化
- LSA:局部连续子序列风格扰动
- 成果:首次在Prostate数据集Dice超过90%,刷新SOTA。
1. 🚀 引言
- 传统模型基于 i.i.d 假设,但实际存在大规模分布漂移。
- CNN局限:仅能学习局部纹理。
- ViT局限:全局感受野,计算量大。
- Mamba优势:长程依赖建模 + 线性复杂度。
2. 📚 相关工作
2.1 🌍 医疗图像分割中的Domain Generalization
- Meta-learning方法(如MASF、FedDG)
- 数据增强方法(如BigAug、DoFE)
- 特征对齐方法(如RAM-DSIR、DCAC)
2.2 🛠 Mamba在医学图像分割中的应用
- Mamba-UNet、SegMamba、VM-UNetV2
- 现有方法未考虑 Domain Shift
3. 🏗 方法
3.1 🔥 总览
Mamba-Sea总体流程:
- GVA全局外观增强
- 送入带有LSA模块的VM-UNet
- 语义一致性训练
3.2 🛡 关键模块
🖼 图2:Mamba-Sea整体框架示意图解释
这张图分为四大模块,分别是:(a) GVA模块、(b) 语义一致性训练、© VSSDG模块、(d) LSA局部增强模块。
(a) GVA模块 - Global Variation Augmentation 🌍
- 输入:从多个不同来源(Domain 1, Domain 2, …, Domain K)的原始图像。
- 流程:
- 经过 Gating机制:判断是否需要进行增强(比如亮度过低则增强)。
- 若需要增强,进入一个由卷积层+BatchNorm+激活(Sigmoid)组成的小网络。
- 输出:生成增强后的图像(整体外观有变化,比如亮度、对比度改变)。
- 目的:在全局级别模拟不同医院/设备造成的图像外观变化,提升泛化能力。
(b) 语义一致性训练 - Semantic Consistency Training 🎯
- 输入:
- 原始图像
- GVA增强后的图像
- 流程:
- 两种图像同时送入 SSM-based分割网络(基于VM-UNet)。
- 得到两个分割预测结果。
- 损失函数:
- L_seg:分割任务的基本损失(比如Dice loss, Cross-Entropy loss)。
- L_consist:一致性损失,鼓励增强前后预测保持一致。
- 目的:使模型输出对输入扰动更鲁棒,从而进一步提升跨域泛化能力。
© VSSDG模块 - Selective Scanning with Local Augmentation ⚙️
- 这是 网络内部的特征处理模块。
- 原本是Selective State Space Block (SS Block),这里被改进:
- 加入了**LSA(Local Style Augmentation)**模块,作为新的路径。
- 结构细节:
- 多个Linear Layer + Depthwise-Conv(DW-Conv)
- 多次LayerNorm标准化
- 通过Hadamard乘积和加法整合不同特征
- 目的:在局部token建模时,引入风格扰动,打破过拟合,增强域内变化的适应性。
(d) LSA模块 - Local Sequence-wise Style Transformation 🧩
- 位置:插入到VSSDG模块内部。
- 流程:
- Scan Expanding:把图像特征展开成序列。
- Style Augmentations:对每个序列进行风格统计扰动(均值、方差加噪声)。
- Sequence-wise Mixup:连续地混合原始序列和增强序列(而不是随机单点扰动)。
- Scan Merging:重新组合成图像特征。
- 目的:在局部级别模拟风格变化,帮助模型学到更稳定、更有语义的特征。
🔥 总结一张话
模块 | 作用 | 目标 |
---|---|---|
(a) GVA | 整体外观增强 | 模拟不同医院采集条件 |
(b) 语义一致性训练 | 保持增强前后输出一致 | 抗扰动泛化 |
© VSSDG | 改良版SSM模块 | 融合局部增强 |
(d) LSA | 局部子序列风格扰动 | 对局部变化更鲁棒 |
4. 🧪 实验
4.1 🗂 数据集
- Fundus(眼底)数据集
- Prostate(前列腺MRI)数据集
- Skin Lesion(大规模皮肤病变分割)
4.2 🏆 主要结果
方法 | Fundus Dice ↑ | Prostate Dice ↑ | Skin Lesion Dice ↑ |
---|---|---|---|
Baseline (VM-UNet) | 86.90% | 87.56% | 90.78% |
Mamba-Sea (Ours) | 89.68% | 90.02% | 93.11% |
- 在所有任务上,Mamba-Sea大幅提升,尤其是在Skin Lesion任务上取得了新SOTA。
4.3 🧩 消融实验
模块组合 | Fundus Dice ↑ | Prostate Dice ↑ |
---|---|---|
去除GVA | 87.84% | 87.72% |
去除LSA | 88.65% | 88.79% |
全部保留(Mamba-Sea) | 89.68% | 90.02% |
- GVA和LSA模块均带来明显提升。
4.4 📈 进一步分析
- t-SNE分析显示,Mamba-Sea能极大缩小不同域之间的特征分布距离。
- Hyperparameter分析表明模型对参数变化不敏感,稳定性好。
- 统计显著性测试(paired t-test)确认性能提升有效(p < 0.05)。
5. 🧠 讨论与结论
- 总结:首次探索Mamba在Domain Generalization中的潜力,提出有效的全局到局部序列增强策略。
- 未来方向:结合更复杂的序列建模机制、进一步提升Mamba在医学领域的普适性。