【MICCAI-2024】详细图解 MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation


MedCLIP-SAM


📄 论文信息

  • 标题: MedCLIP-SAM: Medical Image Segmentation with CLIP-driven Prompting
  • 作者: Taha Koleilat, Hojat Asgariandehkordi, Hassan Rivaz, Yiming Xiao
  • 机构: Concordia University, Montreal, Canada
  • 🔗 GitHub 源码地址

🎯 一、研究背景与动机

医学图像分割对疾病诊断、治疗规划等场景至关重要,但现有方法面临以下挑战:

🔸 标注数据有限
🔸 模型跨任务/模态泛化能力弱
🔸 缺乏交互性与可解释性

✨ 基础模型(如 CLIP 和 SAM)的出现带来了新的可能性。本研究首次将 BiomedCLIP 与 SAM 融合,提出框架 MedCLIP-SAM,实现:

  • 🧠 文本引导的图像分割
  • ❄️ 零样本(zero-shot)分割
  • 🔧 弱监督(weakly-supervised)学习

🧩 二、方法总览

MedCLIP-SAM流程图

三个阶段:

  1. ⚙️ DHN-NCE 微调
  2. 🧊 Zero-shot 分割
  3. 🛠️ 弱监督训练

🔧 三、DHN-NCE 微调阶段

输入: 医学图像 + 医学文本描述
处理流程:

  • 📷 图像编码器(Image Encoder) → 提取视觉特征 ( I_p )
  • 📝 文本编码器(Text Encoder) → 提取语义特征 ( T_p )
  • 💥 使用 DHN-NCE 损失函数(强调 hard negative),优化 BiomedCLIP 语义对齐能力

结果: BiomedCLIP 学会精准对齐医学图像与描述之间的语义关系


🧊 四、零样本分割(Zero-shot Segmentation)

输入: 医学图像 + 文本提示(如 “benign breast tumour”)

流程:

  1. 📥 图像 & 文本 →❄️Fine-tuned BiomedCLIP → 提取特征
  2. 🔍 gScoreCAM → 显著性图 + CRF后处理 → 得到 提示框 (Box Prompt)
  3. ✂️ SAM → 使用 box prompt 和图像 → 生成伪掩膜(pseudo-mask)

结果:无人工掩膜标签情况下,输出具备语义引导的分割结果 ✅


🛠️ 五、弱监督训练(Weakly Supervised Segmentation)

输入: 上一阶段得到的伪掩膜

流程:

  • 🏗️ 使用伪掩膜作为弱标签
  • 🔄 训练额外分割网络(如 Residual U-Net)
  • 📉 损失函数:Dice + Cross Entropy(DiceCE)

结果: 提升伪掩膜质量,获得更高精度的分割输出 🎯


🧪 六、数据集设置

📚 数据集🔬 模态🎯 任务📊 数据划分
BUSI乳腺超声乳腺肿瘤分割训练600 + 验证65 + 测试98
Brain Tumor MRI脑 MRI脑肿瘤分割训练1462 + 验证400 + 测试400
COVID-19 X-ray胸部 X-ray肺部分割训练16280 + 验证1372 + 测试957

💡 七、创新亮点

✅ 首次将 CLIP 与 SAM 融合用于医学图像
✅ 提出 DHN-NCE:处理难负样本的对比损失
✅ 将 gScoreCAM 引入医学图像分析
Zero-shot 分割性能强,可与部分有监督方法媲美
✅ 支持多模态、多任务分割,适应性强


🔭 八、未来方向

  • 🌐 扩展到更多模态(如3D CT、MRI)
  • 💬 探索更复杂的自然语言提示工程
  • 🧠 与临床系统深度融合,提升实用性

🏁 九、结论

MedCLIP-SAM 提供了一种通用、交互式且可迁移的医学图像分割解决方案,尤其适用于 低资源数据场景。它标志着 通用视觉基础模型向医学影像领域迁移的一大步


### MICCAI 2024 会议介绍 #### 时间 MICCAI 2024 的具体日期尚未正式公布。通常情况下,MICCAI 会议会在每年的秋季举行,持续时间为一周左右。建议关注官方渠道获取最新的时间安排信息。 #### 地点 关于 MICCAI 2024 的举办地点,目前也未有确切消息发布。以往的 MICCAI 会议曾在多个国家和地区召开,包括但不限于欧洲、北美和亚洲的主要城市。具体的举办地点将在后续公告中披露[^2]。 #### 主题 虽然 MICCAI 2024 的主题细节还未公开,但根据往届会议的传统,可以预期本次大会将继续聚焦于医学影像计算与计算机辅助干预领域的前沿研究和技术进展。常见的议题可能涉及: - 医学图像处理的新算法和发展趋势 - 计算机视觉技术在医疗中的创新应用 - 多模态数据融合及其临床意义 - 深度学习模型优化及其实验验证方法 - 手术导航系统的智能化升级路径探讨 为了获得更加详尽的信息,推荐定期访问 MICCAI 官方网站并订阅其通讯服务以便及时掌握最新动态。 ```python import requests from bs4 import BeautifulSoup def get_miccai_info(): url = "https://www.miccai.org/" response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') # 假设页面结构中有特定标签用于显示未来活动详情 future_events_section = soup.find('section', {'id': 'future-events'}) miccai_2024_details = {} if future_events_section: event_list_items = future_events_section.find_all('li', class_='event-item') for item in event_list_items: year = item.find('span', class_='year').text.strip() if year == '2024': title = item.find('h3', class_='title').text.strip() date = item.find('p', class_='date').text.strip() location = item.find('p', class_='location').text.strip() miccai_2024_details['Title'] = title miccai_2024_details['Date'] = date miccai_2024_details['Location'] = location break return miccai_2024_details or {"Message": "No information available yet."} print(get_miccai_info()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吾在学习路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值