为什么要创建索引?
当数据量非常大的时候,select * from 在java客户端上就没有那么管用了,查出来(20+w条数据)再封装成对象需要20-40秒。
因此我们需要建立索引来对查询进行优化。
为什么索引可以提高查询效率?
数据库在执行一条Sql语句时,默认走的全表扫描,从第一条到最后一条中途不停顿。
如果我们建立了一个索引,那么我们可以直接通过索引去表中找到他就行了。相比全表扫描节省了非常多的时间。
索引的结构是什么?
索引列表是B类树的数据结构。
比如select * from student where age=18 执行这条语句时,整个表都会扫描。如果对age建立了索引,那么只需要从根节点判断18是大于还是小于,大于扫右边,小于扫左边,扫到了18就回去表中提取记录就可以。
哈希索引不支持范围查询,如age>18
索引的添加场景有哪些?
主键自动建立主键索引(唯一索引)
where子句中的列,频繁作为查询字段的列。
表连接关联的列。
排序用到的列。
distinct所使用的的列。
列的基数越大(选择性大),索引的效率就越高。
哪些场景不适合使用索引?
表记录太少。
频繁修改的字段。
数据重复且分布平均的字段。
索引有几种?
5种。
单列索引,即一个索引只包含单个列,一个表可以有多个单列索引。如(age),则树只存age。
复合索引(多列索引),即一个索引包含多个列。如(name,age)则为一棵树不是两棵树,以name排序,name相同再以age排序。
唯一性索引,索引列的值必须唯一,但是允许有空值。
全文索引,索引的是内容中的关键词,用于全文检索。(直接用ES好了,没必要)
主键索引。
为什么选择用B树而不是别的树?
B树意为平衡(Balance)树,是专门为了磁盘存储结构而设计的一种多路平衡树,非常符合索引的各项要求。
哈希表。定位搜索速度极快,查询时间复杂度为O(1),但是不支持范围查询。
二叉搜索树。支持定位查询,也支持范围搜索,但是树节点可能失衡,导致查询性能严重下降。
红黑树。特殊的平衡二叉搜索树,查询时间复杂度为O(log2N)。但是在大规模数据存储中,会导致红-黑树结构由于树的深度过大而造成磁盘I/O读写过于频繁,进而导致查询效率低下