二叉树-同构
树的同构:
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
Figure 1
Figure 2
链式存储二叉树
算法:
int Isomorphic(Tree T1, Tree T2)
{
if (!T1 && !T2)return 1;//两棵树均为空,是同构的
if (!T1 && T2 || T1 && !T2 || T1->Element != T2->Element)
return 0;//一颗树为空,另一颗树不为空,则不是同构的;两棵树的元素不一样,不是同构的
return Isomorphic(T1->Left, T2->Left) && Isomorphic(T1->Right, T2->Right) || Isomorphic(T1->Left, T2->Right) && Isomorphic(T1->Right, T2->Left);
//(T1左子树与T2左子树同构 并且 T1右子树与T2右子树同构)或者(T1左子树与T2右子树同构 并且 T1右子树与T2左子树同构)
}
数组型存储二叉树
例题:
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
结尾无空行
输出样例1:
Yes
结尾无空行
算法:
#include <stdio.h>
#include <stdlib.h>
#define N 11
int n;
typedef struct TNode
{
char data;
int Left, Right;
}TNode;
TNode T1[N], T2[N];
int Create(TNode node[])
{
int i, check[N] = { 0 };
//TNode node[N];//
char ch;
scanf("%d", &n);
getchar();
if(!n)return -1;//空树情况
for (i = 0; i < n; i++)
{
scanf("%c", &node[i].data);
getchar();
scanf("%c", &ch);
getchar();
if (ch == '-')node[i].Left = -1;
else
{
node[i].Left = ch - '0';
check[node[i].Left] = 1;
}
scanf("%c", &ch);
getchar();
if (ch == '-')node[i].Right = -1;
else
{
node[i].Right = ch - '0';
check[node[i].Right] = 1;
}
}
for (i = 0; check[i]; i++);
return i;
}
int IsTongGou(int root1, int root2)//类比链式存储的二叉树,传参仍为“地址”(结点的下标)
{
if (root1 == -1 && root2 == -1)return 1;
if (root1 == -1 && root2 != -1 || root1 != -1 && root2 == -1 || T1[root1].data != T2[root2].data)return 0;
return IsTongGou(T1[root1].Left, T2[root2].Left) && IsTongGou(T1[root1].Right, T2[root2].Right) || IsTongGou(T1[root1].Left, T2[root2].Right) && IsTongGou(T1[root1].Right, T2[root2].Left);
}
int main()
{
int t1, t2;
t1 = Create(T1);
t2 = Create(T2);
if (IsTongGou(t1, t2))printf("Yes");
else printf("No");
return 0;
}
二叉树-高度
思路:
分别遍历左子树和右子树,返回 最大高度+1,及树的高度
算法:
int Height(Tree T)
{
int Lh, Rh;
if (!T)return 0;
Lh = Height(T->Left);
Rh = Height(T->Right);
if (Lh > Rh)return Lh + 1;
else return Rh + 1;
}
二叉树-还原
已知先序和中序
给定一棵二叉树的先序遍历序列和中序遍历序列,要求计算该二叉树的高度。
思路:
- 根据先序遍历结果确定根节点。先序遍历的第一个节点为根节点。
- 在中序遍历结果中找到根节点,根节点左侧的部分为左子树节点,根节点右侧的部分为右子树节点。
- 将中序遍历的结果按根节点分为两部分,迭代的执行第一步和第二步,直到还原整个二叉树。
说明:
root:先序遍历的根结点
begin:在中序遍历结果中找根结点的起点
len:树的结点个数
算法:
#include <stdio.h>
#include <stdlib.h>
#define MAX 100
typedef struct TreeNode
{
char data;
struct TreeNode* Left, * Right;
}*Tree;
char Pre[MAX], In[MAX];
Tree RCreate(int root, int begin, int len)
{
int i;
if (len <= 0)return NULL;
Tree T;
T = (Tree)malloc(sizeof(struct TreeNode));
if (!T)exit(0);
T->data = Pre[root];
for (i = 0; Pre[root] == In[begin + i]; i++);
T->Left = RCreate(root + 1, begin, i);
T->Right = RCreate(root + i + 1, begin + i + 1, len - i - 1);
return T;
}
int Height(Tree T)
{
if (!T)return 0;
int Lh, Rh;
Lh = Height(T->Left);
Rh = Height(T->Right);
return Lh > Rh ? Lh + 1 : Rh + 1;
}
int main()
{
Tree T;
int i, n;
scanf("%d", &n);
for (i = 0; i < n; i++)scanf("%c", &Pre[i]);
getchar();//读取缓冲区中的回车符
for (i = 0; i < n; i++)scanf("%c", &In[i]);
T = RCreate(0, 0, n);
printf("\n%d", Height(T));
return 0;
}
已知后序和中序
本题要求根据给定的一棵二叉树的后序遍历和中序遍历结果,输出该树的先序遍历结果。
说明:
root:后序遍历的根节点
begin:在中序遍历中子树的起始位置
end:在中序遍历中子树的结束位置
end-i:右子树的结点数
root-1:去除根节点后左子树与右子树的结点数的总和
算法:
#include <stdio.h>
#include <stdlib.h>
#define N 31
int Post[N], In[N];
typedef struct TreeNode
{
int data;
struct TreeNode* lchild, * rchild;
}*Tree;
Tree Create(int root, int begin, int end)
{
Tree T;
int i;
if (begin > end)return NULL;
T = (Tree)malloc(sizeof(struct TreeNode));
T->data = Post[root];
for (i = begin; Post[root] != In[i]; i++);
T->lchild = Create(root - 1 - (end - i), begin, i - 1);
T->rchild = Create(root - 1, i + 1, end);
return T;
}
void PreOrder(Tree T)
{
if (!T)return;
printf(" %d", T->data);
PreOrder(T->lchild);
PreOrder(T->rchild);
}
int main()
{
int n, i;
Tree T;
scanf("%d", &n);
for (i = 0; i < n; i++)scanf("%d", &Post[i]);
for (i = 0; i < n; i++)scanf("%d", &In[i]);
T = Create(n - 1, 0, n - 1);
printf("Preorder:");
PreOrder(T);
return 0;
}