二叉树的同构、高度、还原

二叉树-同构

树的同构:

给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。

img
Figure 1

img
Figure 2

链式存储二叉树

算法:

int Isomorphic(Tree T1, Tree T2)
{
    if (!T1 && !T2)return 1;//两棵树均为空,是同构的
    if (!T1 && T2 || T1 && !T2 || T1->Element != T2->Element)
        return 0;//一颗树为空,另一颗树不为空,则不是同构的;两棵树的元素不一样,不是同构的
    return Isomorphic(T1->Left, T2->Left) && Isomorphic(T1->Right, T2->Right) || Isomorphic(T1->Left, T2->Right) && Isomorphic(T1->Right, T2->Left);
    //(T1左子树与T2左子树同构 并且 T1右子树与T2右子树同构)或者(T1左子树与T2右子树同构 并且 T1右子树与T2左子树同构)
}

数组型存储二叉树

例题:

输入格式:

输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。

输出格式:

如果两棵树是同构的,输出“Yes”,否则输出“No”。

输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
结尾无空行
输出样例1:
Yes
结尾无空行
算法:
#include <stdio.h>
#include <stdlib.h>
#define N 11
int n;

typedef struct TNode
{
	char data;
	int Left, Right;
}TNode;
TNode T1[N], T2[N];

int Create(TNode node[])
{
	int i, check[N] = { 0 };
	//TNode node[N];//
	char ch;
	scanf("%d", &n);
	getchar();
    if(!n)return -1;//空树情况
	for (i = 0; i < n; i++)
	{
		scanf("%c", &node[i].data);
		getchar();
		scanf("%c", &ch);
		getchar();
		if (ch == '-')node[i].Left = -1;
		else
		{
			node[i].Left = ch - '0';
			check[node[i].Left] = 1;
		}
		scanf("%c", &ch);
		getchar();
		if (ch == '-')node[i].Right = -1;
		else
		{
			node[i].Right = ch - '0';
			check[node[i].Right] = 1;
		}
	}
	for (i = 0; check[i]; i++);
	return i;
}

int IsTongGou(int root1, int root2)//类比链式存储的二叉树,传参仍为“地址”(结点的下标)
{
	if (root1 == -1 && root2 == -1)return 1;
	if (root1 == -1 && root2 != -1 || root1 != -1 && root2 == -1 || T1[root1].data != T2[root2].data)return 0;
	return IsTongGou(T1[root1].Left, T2[root2].Left) && IsTongGou(T1[root1].Right, T2[root2].Right) || IsTongGou(T1[root1].Left, T2[root2].Right) && IsTongGou(T1[root1].Right, T2[root2].Left);
}

int main()
{
	int t1, t2;
	t1 = Create(T1);
	t2 = Create(T2);
	if (IsTongGou(t1, t2))printf("Yes");
	else printf("No");
	return 0;
}

二叉树-高度

思路:

分别遍历左子树和右子树,返回 最大高度+1,及树的高度

算法:

int Height(Tree T)
{
    int Lh, Rh;
    if (!T)return 0;
    Lh = Height(T->Left);
    Rh = Height(T->Right);
    if (Lh > Rh)return Lh + 1;
    else return Rh + 1;
}

二叉树-还原

已知先序和中序

给定一棵二叉树的先序遍历序列和中序遍历序列,要求计算该二叉树的高度。

思路:

  1. 根据先序遍历结果确定根节点。先序遍历的第一个节点为根节点。
  2. 在中序遍历结果中找到根节点,根节点左侧的部分为左子树节点,根节点右侧的部分为右子树节点。
  3. 将中序遍历的结果按根节点分为两部分,迭代的执行第一步和第二步,直到还原整个二叉树。

说明:

root:先序遍历的根结点

begin:在中序遍历结果中找根结点的起点

len:树的结点个数

算法:

#include <stdio.h>
#include <stdlib.h>
#define MAX 100

typedef struct TreeNode
{
	char data;
	struct TreeNode* Left, * Right;
}*Tree;
char Pre[MAX], In[MAX];

Tree RCreate(int root, int begin, int len)
{
	int i;
	if (len <= 0)return NULL;
	Tree T;
	T = (Tree)malloc(sizeof(struct TreeNode));
	if (!T)exit(0);
	T->data = Pre[root];
	for (i = 0; Pre[root] == In[begin + i]; i++);
	T->Left = RCreate(root + 1, begin, i);
	T->Right = RCreate(root + i + 1, begin + i + 1, len - i - 1);
	return T;
}

int Height(Tree T)
{
	if (!T)return 0;
	int Lh, Rh;
	Lh = Height(T->Left);
	Rh = Height(T->Right);
	return Lh > Rh ? Lh + 1 : Rh + 1;
}

int main()
{
	Tree T;
	int i, n;
	scanf("%d", &n);
	for (i = 0; i < n; i++)scanf("%c", &Pre[i]);
	getchar();//读取缓冲区中的回车符
	for (i = 0; i < n; i++)scanf("%c", &In[i]);
	T = RCreate(0, 0, n);
	printf("\n%d", Height(T));
	return 0;
}

已知后序和中序

本题要求根据给定的一棵二叉树的后序遍历和中序遍历结果,输出该树的先序遍历结果。

说明:

root:后序遍历的根节点

begin:在中序遍历中子树的起始位置

end:在中序遍历中子树的结束位置

end-i:右子树的结点数

root-1:去除根节点后左子树与右子树的结点数的总和

算法:

#include <stdio.h>
#include <stdlib.h>
#define N 31
int Post[N], In[N];

typedef struct TreeNode
{
	int data;
	struct TreeNode* lchild, * rchild;
}*Tree;

Tree Create(int root, int begin, int end)
{
	Tree T;
	int i;
	if (begin > end)return NULL;
	T = (Tree)malloc(sizeof(struct TreeNode));
	T->data = Post[root];
	for (i = begin; Post[root] != In[i]; i++);
	T->lchild = Create(root - 1 - (end - i), begin, i - 1);
	T->rchild = Create(root - 1, i + 1, end);
	return T;
}
void PreOrder(Tree T)
{
	if (!T)return;
	printf(" %d", T->data);
	PreOrder(T->lchild);
	PreOrder(T->rchild);
}

int main()
{
	int n, i;
	Tree T;
	scanf("%d", &n);
	for (i = 0; i < n; i++)scanf("%d", &Post[i]);
	for (i = 0; i < n; i++)scanf("%d", &In[i]);
	T = Create(n - 1, 0, n - 1);
	printf("Preorder:");
	PreOrder(T);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值