python数据增强——对数据预处理(随即裁剪、翻转)

import os
from PIL import Image
import torch.utils.data as data
import torchvision.transforms as transforms
import cv2
import numpy as np
import random

random.seed(2021)


class CamObjDataset(data.Dataset):
    def __init__(self, image_root, gt_root, edge_root, trainsize):
        self.trainsize = trainsize  # 用于训练时图像的大小
        # 图像 标签 边缘图像列表创建和排序
        self.images = [image_root + f for f in os.listdir(image_root) if f.endswith('.jpg')]
        self.gts = [gt_root + f for f in os.listdir(gt_root) if f.endswith('.png')]
        self.edges = [edge_root + f for f in os.listdir(edge_root) if f.endswith('.png')]
        # 对这些列表进行排序,以确保图像、标签和边缘图像的顺序一致
        self.images = sorted(self.images)
        self.gts = sorted(self.gts)
        self.edges = sorted(self.edges)
        # 过滤不匹配文件:移除尺寸不一致的图像、标签和边缘图像
        self.filter_files()
        self.size = len(self.images)
     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值