算法学习记录帖|后续持续更新

本文探讨了数据结构中的核心概念,包括数组、链表、跳表、栈、队列和哈希表。数组提供固定大小且直接访问的优势,但插入和删除效率较低。链表则在插入和删除上表现优秀,但查找速度慢。跳表通过多级索引优化了链表的查找效率。栈和队列作为基础数据结构,分别用于解决最近相关性和先进先出的问题。哈希表利用散列函数实现快速查找,但需要处理哈希碰撞。这些基础知识对于提升算法效率至关重要。
摘要由CSDN通过智能技术生成

算法
学习方法:多去LeetCode刷题

算法与数据结构思维导图:https://download.csdn.net/download/m0_52074396/15261533

Array

范式(现已范式):任何数据类型都能装

底层由内存管理器管理

数组增加元素

inserting插入:移动一半的元素,再进行插入操作

Deleting删除:同理

时间复杂度:
pretend O(1)

apprnd O(1)

lookup O(1)

insert O(n)

delete O(n)

Linked List

增加/删除结点:改变指针指向即可

时间复杂度:
prepend O(1)

apprnd O(1)

lookup O(n)

insert O(1)

delete O(1)

跳表:为了解决链表look up 时间复杂度是O(n)

**如何给链表加速?**空间换时间

升维 ,比如 中指针

索引:一级索引,二级索引(一级比一级 多走一步) 现实一般走满足n/2级索引

时间复杂度O(log2 n)

现实中跳表会因为修改而变的不再工整,维护成本高。

栈与队列

栈stack:先入后出的容器(桶); 添加、删除皆为O(1) 最近相关性问题用栈来解决,洋葱

队列Queue:先来先出(管道); 添加、删除皆为O(1)

双端队列Deque:添加、删除皆为O(1);查询O(n)

优先队列Priority Queue:插入O(1);取出O(logN)按照元素优先级取出

底层具体实现的数据结构较为多样和复杂:heap,bst,treap

哈希表、映射、集合

Hash table:也叫散列表,根据关键码值而直接进行访问的数据结构,通过把关键码值映射到表中一个位置来访问记录,以加快查找速度。这个映射函数叫作散列函数,存放记录的数组叫做哈希表。‘

哈希函数选的好,有效避免哈希碰撞。

Map:key-value对,key不重复

Set:不重复元素的集合

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨竹菊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值