decoupled weight decay regularization(解耦权重衰减正则化)

1权重、增益(gains)和偏置(biases)

在深度学习模型中,权重、增益(gains)和偏置(biases)是三种不同类型的参数,它们的作用和用途有所不同:
权重(Weights):
定义:权重是神经网络中连接各层神经元的参数。它们决定了输入信号在传递到下一层时的重要性。
用途:权重通过线性组合输入特征进行加权,通常用于计算每个神经元的激活值。权重的调整直接影响模型的学习和表现。
增益(Gains):
定义:增益是用于放大或缩小特定参数的系数,通常在某些特定类型的网络(如Batch Normalization、Layer Normalization等)中出现。
用途:增益可以帮助模型控制各层输出的尺度,增强模型的表达能力。增益参数通常不会受到权重衰减的影响。
偏置(Biases):
定义:偏置是添加到神经元激活值上的常数项,帮助模型学习输入数据的偏移。
用途:偏置允许模型在没有输入信号时仍然能够产生非零的输出,使得模型更灵活。与权重不同,偏置通常在每层的每个神经元中都有单独的参数。
在优化过程中,通常会对权重施加权重衰减,以防止过拟合,而增益和偏置不受此影响,因为它们在模型中的角色和目标不同。这种区分有助于更好地控制模型的学习过程。

2解耦权重衰减正则化

解耦权重衰减正则化的关键在于将权重衰减(weight decay)与其他参数的更新分开处理。这种方法可以通过以下步骤实现:

  1. 区分参数类型:在模型中识别出不同类型的参数,例如权重、增益(gains)、偏置(biases)等。权重通常需要应用衰减,而增益和偏置则不需要。

  2. 独立更新:在优化步骤中,对需要应用权重衰减的参数(即权重)和不需要衰减的参数(增益和偏置)进行独立更新。具体做法是,在计算梯度时,仅对权重施加衰减,而其他参数则按照正常的学习率进行更新。

  3. 数学表达:假设有一个权重参数 ( w ),它的更新步骤可以表示为:
    w ′ = w − η ⋅ ∇ L ( w ) − λ ⋅ w w' = w - \eta \cdot \nabla L(w) - \lambda \cdot w w=wηL(w)λw

    其中 η \eta η是学习率, ∇ L ( w ) \nabla L(w) L(w) 是损失函数对权重的梯度, λ \lambda λ 是权重衰减因子。对于增益和偏置,不应用最后一项。

这种方法的好处在于,它可以有效地防止模型的过拟合,同时使得模型在训练过程中更稳定,更容易收敛。

3偏置参数例子

增益(gains)参数通常用于调节某些层的输出,尤其是在批量归一化(Batch Normalization)、层归一化(Layer Normalization)或其他归一化技术中。它们用于控制输出的幅度。 例子

  1. 批量归一化(Batch Normalization)
    在批量归一化中,输入数据首先被标准化(减去均值并除以标准差),然后乘以增益参数 γ \gamma γ,再加上偏置参数 β \beta β y = γ ⋅ BN ( x ) + β y = \gamma \cdot \text{BN}(x) + \beta y=γBN(x)+β

    其中, BN ( x ) \text{BN}(x) BN(x) 是标准化后的输入, γ \gamma γ是增益参数, β \beta β 是偏置参数。通过调整 γ \gamma γ ,可以控制标准化后的输出的缩放。

  2. 层归一化(Layer Normalization)

    • 类似于批量归一化,在层归一化中,增益和偏置参数也被应用于标准化后的输出,以便调整每个层的输出特征。

增益参数的作用主要是:

  • 控制输出的范围:通过增益,可以放大或缩小归一化后的输出,使模型能够更好地适应数据的分布。
  • 提高模型的表达能力:增益参数使得网络在学习过程中能够调整输出的幅度,有助于提高模型的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开始King

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值