推荐系统CTR预估学习路线:引入注意力机制

推荐系统CTR预估学习路线:从LR到FM/FFM探索二阶特征的高效实现

推荐系统CTR预估学习路线:利用树模型自动化特征工程

推荐系统CTR预估学习路线:深度模型

推荐系统CTR预估学习路线:引入注意力机制

v2-071e132c7353c2be34deb925be1bf617_b.jpg
作者:Eric陈健锋 来源:炼丹笔记

导语

在广告、推荐系统CTR预估问题上,早期的完全规则方法被过渡到以LR为代表的机器学习方法,为了充分发挥组合特征的价值,在相当长一段时间里,业界热衷于使用LR+人工特征工程。但人工组合特征成本高昂 ,在不同任务上也难以复用。2010年FM因子分解方法的出现解决了人工组合特征的困境,2014年Facebook提出的GBDT+LR也给出了一种利用树模型特点构建组合特征的思路。不过随着深度学习的崛起,2015年以后,借助非线性自动组合特征能力的深度模型,开始成为业内的主流。从经典DNN到结合浅层的Wide&Deep,用于CTR预估的深度模型在近些年间百花盛开,各种交叉特征建模方法层出不穷,Attention机制也从其他研究领域引入,帮助更好的适应业务,提升模型的解释性。在这进化路线之下,核心问题离不开解决数据高维稀疏难题,自动化组合特征,模型可解释。我们梳理了近些年CTR预估问题中有代表性的模型研究/应用成果,并对部分经典模型的实现原理进行详细剖析,落成文字作为学习过程的记录。

目录

0. CTR预估模型进化路线
1. 从LR到FM/FFM探索二阶特征的高效实现
    1.1 LR与多项式模型
    1.2 FM模型
    1.3 FFM模型
    1.4 双线性FFM模型
2. GBDT+LR利用树模型自动化特征工程
3. 深度模型提升非线性拟合能力自动高阶交叉特征end-to-end学习
    3.1 特征的嵌入向量表示
    3.2 经典DNN网络框架
    3.3 DNN框架下的FNNPNN与DeepCrossing模型
    3.4 Wide&Deep框架及其衍生模型
        3.4.1 Wide部分的改进
        3.4.2 Deep部分的改进
        3.4.3 引入新的子网络
4. 引入注意力机制提高模型自适应能力与可解释性
    4.1 AFM模型
    4.2 AutoInt模型
    4.3 FiBiNET模型
    4.4 DIN模型
    4.5 DIEN模型
5. 总结

(四)引入注意力机制:提高模型自适应能力与可解释性

直观上,注意力机制可以借用人类的视觉行为来进行解释,例如我们观看一张照片的时候,视觉系统会很自然的将注意焦点集中在某些区域,而自动忽略其他不相关的内容。这种机制被引入到机器学习/深度学习,其中一个著名事件是࿰

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值