1.导入模块
from tensorflow.keras.callbacks import TensorBoard
例:
2.设置Tensorboard函数并存入一个变量
变量= TensorBoard(log_dir="./tensorboard", histogram_freq=1,write_grads=True)
##函数中各参数含义
1、log_dir: 用来保存Tensorboard的日志文件等内容的位置
2、histogram_freq: 对于模型中各个层计算激活值和模型权重直方图的频率。
3、write_graph: 是否在 TensorBoard 中可视化图像。
4、write_grads: 是否在 TensorBoard 中可视化梯度值直方图。
5、batch_size: 用以直方图计算的传入神经元网络输入批的大小。
6、write_images: 是否在 TensorBoard中将模型权重以图片可视化。
7、update_freq: 常用的三个值为’batch’ 、 ‘epoch’ 或 整数。当使用 ‘batch’ 时,在每个 batch 之后将损失和评估值写入到 TensorBoard 中。 ‘epoch’ 类似。如果使用整数,会在每一定个样本之后将损失和评估值写入到 TensorBoard 中。
##
3.在model.fit中调用回调函数callbacks 呼叫上一步定义的变量
history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
callbacks=[变量])
例:
4.若使用pycharm中,直接用Terminal进入当前环境,cd到保存Tensorboard的上一级路径,执行下列命令
tensorboard --logdir=文件名
例:
5.将给出的网址在Microsoft Edge浏览器打开即可
例: