人工智能AI编程基础(九)

本文介绍了在TensorFlow中使用tf.gather函数进行多维度切片操作,包括单个和多个索引取值,以及不同axis参数的影响。同时,文章也探讨了tf.boolean_mask在数据过滤中的应用,展示如何根据布尔掩码筛选tensor的值。
摘要由CSDN通过智能技术生成

tensor切片的方法在实践中大量运用,其中涉及到多维度的切片操作,有时还是挺让人头晕的。

tf.gather()的下标取值和切片的方法:
import tensorflow as tf
from datetime import datetime
import numpy as np
 
 
def pprint(*args, **kwargs):
    print(datetime.now(), *args, **kwargs, end='\n' + '*' * 50 + '\n')
 
 
params = tf.constant(['p0', 'p1', 'p2', 'p3', 'p4', 'p5'])
pprint(params[3].numpy())  # 获取第4个
pprint(tf.gather(params, 3).numpy())  # 获取第4个
pprint(tf.gather(params, indices=[2, 0, 2, 5]).numpy())  # 分别获取第3个,第1个,第3个,第6个
pprint(tf.gather(params, [[2, 0], [2, 5]]).numpy())  # 分别取下标的值,然后生成一个2 * 2的数组
 
params = tf.constant([[0, 1.0, 2.0],
                      [10.0, 11.0, 12.0],
                      [20.0, 21.0, 22.0],
                      [30.0, 31.0, 32.0]])
pprint(tf.gather(params, indices=[3, 1]))  # 第4个下标和第1个
# 如果axis=0,则沿着纵轴进行操作;
# 如果axis=1,则沿着横轴进行操作
pprint(tf.gather(params, indices=[2, 1], axis=1).numpy())
# 多维度下标取值
params = tf.constant([
    [0, 0, 1, 0, 2],
    [3, 0, 0, 0, 4],
    [0, 5, 0, 6, 0]])
indices = tf.constant([
    [2, 4],
    [0, 4],
    [1, 3]])
pprint(tf.gather(params, indices, axis=1, batch_dims=1).numpy())
#################################################################
a = tf.random.normal([4, 35, 8])
pprint(tf.gather(a, axis=1, indices=[2, 3, 7, 9, 16]).shape)  # axis=1就是第2个维度的变化
pprint(tf.gather(a, axis=2, indices=[2, 3, 7]).shape)  # axis=2就是最里面的维度,所以是[4,35,3]
#################################################################
# array([[b'c0', b'd0'],
#        [b'a1', b'b1']], dtype=object)
result = tf.gather_nd(indices=[[0, 1], [1, 0]],
                      params=[[['a0', 'b0'], ['c0', 'd0']],
                              [['a1', 'b1'], ['c1', 'd1']]]).numpy()
pprint(result)
# array([b'b0', b'b1'], dtype=object),由外向内
pprint(tf.gather_nd(indices=[[0, 0, 1], [1, 0, 1]],
                    params=[[['a0', 'b0'], ['c0', 'd0']],
                            [['a1', 'b1'], ['c1', 'd1']]]).numpy())
# array([[[[b'a1', b'b1'],
#            [b'c1', b'd1']]],
#          [[[b'a0', b'b0'],
#            [b'c0', b'd0']]]], dtype=object)
pprint(tf.gather_nd(indices=[[[1]], [[0]]],
                    params=[[['a0', 'b0'], ['c0', 'd0']],
                            [['a1', 'b1'], ['c1', 'd1']]]).numpy())
tf.boolean_mask()数据过滤的方法:
# 根据布尔值筛选值
tensor = [0, 1, 2, 3]
mask = np.array([True, False, True, False])  # 位置对应
pprint(tf.boolean_mask(tensor, mask))
#################################
tensor = [[1, 2], [3, 4], [5, 6]]
mask = np.array([True, False, True])
pprint(tf.boolean_mask(tensor, mask))  # [[1,2],[5,6]]
 
tensor = tf.random.normal([3, 4])
mask = np.array([True, False, True])
pprint('-----1', tf.boolean_mask(tensor, mask).shape)  # shape=(2,4)
 
tensor = tf.random.normal([4, 28, 28, 3])
mask = np.array([True, True, False, False])  # 4维中取前组数据,所以输同是(2,28,28,3)
pprint('-----2', tf.boolean_mask(tensor, mask).shape)
# 在axis=3这个轴进行取值,[4,28,28,2]
pprint('-----3', tf.boolean_mask(tensor, mask=[True, True, False], axis=3).shape)
# 生成的数据是(3,4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ai语音机器人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值