tensor切片的方法在实践中大量运用,其中涉及到多维度的切片操作,有时还是挺让人头晕的。
tf.gather()的下标取值和切片的方法:
import tensorflow as tf
from datetime import datetime
import numpy as np
def pprint(*args, **kwargs):
print(datetime.now(), *args, **kwargs, end='\n' + '*' * 50 + '\n')
params = tf.constant(['p0', 'p1', 'p2', 'p3', 'p4', 'p5'])
pprint(params[3].numpy()) # 获取第4个
pprint(tf.gather(params, 3).numpy()) # 获取第4个
pprint(tf.gather(params, indices=[2, 0, 2, 5]).numpy()) # 分别获取第3个,第1个,第3个,第6个
pprint(tf.gather(params, [[2, 0], [2, 5]]).numpy()) # 分别取下标的值,然后生成一个2 * 2的数组
params = tf.constant([[0, 1.0, 2.0],
[10.0, 11.0, 12.0],
[20.0, 21.0, 22.0],
[30.0, 31.0, 32.0]])
pprint(tf.gather(params, indices=[3, 1])) # 第4个下标和第1个
# 如果axis=0,则沿着纵轴进行操作;
# 如果axis=1,则沿着横轴进行操作
pprint(tf.gather(params, indices=[2, 1], axis=1).numpy())
# 多维度下标取值
params = tf.constant([
[0, 0, 1, 0, 2],
[3, 0, 0, 0, 4],
[0, 5, 0, 6, 0]])
indices = tf.constant([
[2, 4],
[0, 4],
[1, 3]])
pprint(tf.gather(params, indices, axis=1, batch_dims=1).numpy())
#################################################################
a = tf.random.normal([4, 35, 8])
pprint(tf.gather(a, axis=1, indices=[2, 3, 7, 9, 16]).shape) # axis=1就是第2个维度的变化
pprint(tf.gather(a, axis=2, indices=[2, 3, 7]).shape) # axis=2就是最里面的维度,所以是[4,35,3]
#################################################################
# array([[b'c0', b'd0'],
# [b'a1', b'b1']], dtype=object)
result = tf.gather_nd(indices=[[0, 1], [1, 0]],
params=[[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]).numpy()
pprint(result)
# array([b'b0', b'b1'], dtype=object),由外向内
pprint(tf.gather_nd(indices=[[0, 0, 1], [1, 0, 1]],
params=[[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]).numpy())
# array([[[[b'a1', b'b1'],
# [b'c1', b'd1']]],
# [[[b'a0', b'b0'],
# [b'c0', b'd0']]]], dtype=object)
pprint(tf.gather_nd(indices=[[[1]], [[0]]],
params=[[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]).numpy())
tf.boolean_mask()数据过滤的方法:
# 根据布尔值筛选值
tensor = [0, 1, 2, 3]
mask = np.array([True, False, True, False]) # 位置对应
pprint(tf.boolean_mask(tensor, mask))
#################################
tensor = [[1, 2], [3, 4], [5, 6]]
mask = np.array([True, False, True])
pprint(tf.boolean_mask(tensor, mask)) # [[1,2],[5,6]]
tensor = tf.random.normal([3, 4])
mask = np.array([True, False, True])
pprint('-----1', tf.boolean_mask(tensor, mask).shape) # shape=(2,4)
tensor = tf.random.normal([4, 28, 28, 3])
mask = np.array([True, True, False, False]) # 4维中取前组数据,所以输同是(2,28,28,3)
pprint('-----2', tf.boolean_mask(tensor, mask).shape)
# 在axis=3这个轴进行取值,[4,28,28,2]
pprint('-----3', tf.boolean_mask(tensor, mask=[True, True, False], axis=3).shape)
# 生成的数据是(3,4