步态数据CASIA B数据集获取方式

本文描述了如何从生物识别与安全技术研究中心的官网上下载A和C文件,B文件需填写知情同意书并扫描签字后通过邮件发送。发送B文件过程遇到延迟,最终通过宋纯峰邮箱收到包含CASIAB数据的百度网盘链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先进入官网

生物识别与安全技术研究中心 (ia.ac.cn)

滑倒底下有下载链接

A和C都是可以直接下载,B是无法直接下载的

B要写知情同意书

下载打印出协议,手写签字,通过CS扫码全能王还是其他方式,扫描成PDF或者png图像格式都可以,发邮箱到第一个那里。

我发了一天后没回复我,在发送一遍给下面宋纯峰的那个邮箱,半天就发来CASIA B数据邮件了如下图所示。发来的是百度网盘链接,可以直接下载,不过有一说一,百度网盘下载是真的慢。

### 关于步态数据集及其分析 #### 步态周期检测与几何分布模型 步态周期检测涉及对步态序列中的完整步态周期进行定义和提取。这一过程可以通过几何分布模型实现,该方法能够有效捕捉步态的动态特性并将其转化为数值表示形式[^1]。 #### Gait3D 数据集的特点 Gait3D 是一个大规模的 3D 步态识别数据集,包含了来自 4,000 名受试者的超过 25,000 个序列,这些数据由分布在无约束室内环境中的 39 台摄像机捕获。此数据集不仅提供了精确的 3D 人体网格,还包括传统 2D 轮廓和关键点信息,支持多模态数据分析和研究[^2]。 #### 基于 miu 小波变换的步态数据采集 另一种获取步态数据的方法是利用 BWT61CL 姿态传感器记录行人行走过程中 xyz 方向上的加速度、角速度以及角度变化。这种方法通过 miu 小波变换处理原始信号,从而完成对人体步态特性的检测和分类任务[^3]。 以下是 MATLAB 的简单代码示例展示如何加载 CSV 文件(假设包含上述传感器数据)并对时间序列执行基本预处理操作: ```matlab % 加载CSV文件到矩阵dataMatrix中 filename = 'sensor_data.csv'; dataMatrix = csvread(filename); % 提取XYZ轴加速度列 accX = dataMatrix(:,1); accY = dataMatrix(:,2); accZ = dataMatrix(:,3); % 对每一维加速度做快速傅里叶变换(FFT),以便频域分析 fftAccX = fft(accX); fftAccY = fft(accY); fftAccZ = fft(accZ); figure; subplot(3,1,1); plot(abs(fftAccX)); title('Frequency Domain of X-Axis Acceleration'); subplot(3,1,2); plot(abs(fftAccY)); title('Frequency Domain of Y-Axis Acceleration'); subplot(3,1,3); plot(abs(fftAccZ)); title('Frequency Domain of Z-Axis Acceleration'); ``` 这段脚本展示了如何读入传感器日志,并转换成适合进一步机器学习建模的形式。 #### 数据下载与研究建议 对于希望深入研究步态识别技术的研究人员来说,可以从公开资源处获得 CASIA 和 Gait3D 这样的高质量数据集。具体而言,访问相关项目主页或者联系作者通常能获取最新版本的数据包链接。此外,了解不同类型的特征提取方式也很重要——无论是基于图像轮廓还是惯性测量单元(IMU)设备所收集的时间序列数据
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值