问题四要求我们为选定的一个顾客基于其交易行为推荐代金券,并最后评估模型的性能。这个任务包括顾客行为分析、代金券推荐模型的构建和性能评估三个主要部分。下面是完成这个任务的详细思路:
步骤1:顾客行为分析
首先,需要深入了解所选顾客的购买历史和行为模式。这包括但不限于:
- 分析该顾客购买商品的频率。
- 确定该顾客偏好的商品类型。
- 计算该顾客在不同时间段的购买活动。
- 评估该顾客的平均消费水平。
通过这些分析,我们可以描绘出一个清晰的顾客画像,以便于后续的代金券推荐。
步骤2:代金券推荐模型构建
根据顾客行为分析的结果,我们可以采取以下两种策略之一来构建代金券推荐模型:
策略一:基于规则的推荐
根据顾客行为分析的结果定义一系列规则。例如,如果顾客经常在周末购买或偏好特定品类的商品,则可以针对这些特征推送相关的代金券。
策略二:机器学习模型
使用顾客的交易历史作为特征,