1. 引言
音乐是一门充满创意和艺术的领域,而歌词则是音乐作品中不可或缺的一部分。自动作词器是一种能够生成创意、有趣的歌词的深度学习模型。本篇博客将介绍如何使用R语言和深度学习技术来构建一个自动作词器,探索如何让计算机参与到音乐创作的过程中。
2. 数据集
在构建自动作词器之前,我们需要一个包含歌词的数据集。您可以选择从互联网上获取一个包含各种风格和主题的歌词数据集,或者自己手动创建一个小型数据集用于示例。
以下是一个示例数据集的一部分:
3. 数据预处理
数据预处理是构建自动作词器的关键步骤之一。预处理包括文本分词、标记化、移除停用词等步骤,以便将歌词文本转换成模型可以理解的形式。
# 安装并加载必要的库
install.packages("keras")
library(keras)
# 读取数据
data <- read.csv("lyrics_data.csv")
# 文本分词和标记化
tokenizer <- text_tokenizer(num_words = 5000)
tokenizer %>% fit_text_tokenizer(data$歌词)
# 将文本转换成