【机器学习微积分】08 多元函数的极值(上):梯度法基础

目录

1.梯度概念回顾

2.类比盲人下山的例子

3.梯度下降法的算法思路

4.梯度下降法的代码实现

5.关于算法的补充讨论


从这一讲开始,我们来讨论如何利用迭代法去寻找多元函数的极值点,我们首先从最基础的梯度下降法入手。梯度下降法的思路非常清晰明了,且实现过程也比较简单,是求解无约束最优化问题中的一种最常用、最基础的迭代方法。

1.梯度概念回顾

在梯度下降法当中,顾名思义,梯度是其中最为重要的核心工具和武器。因此,我们有必要回顾一下关于梯度的一些重要概念和特性:

首先,多元函数 f ( x 1 , x 2 , . . . , x n ) f(x_1,x_2,...,x_n) f(x1​,x2​,...,xn​)在点 p 0 p_0 p0​处的梯度 ∇ f \nabla f ∇f是一个 n n n维向量: [ ∂ f ∂ x 1 ∂ f ∂ x 2 ∂ f ∂ x 3 . . . ∂ f ∂ x n ] T \begin{bmatrix} \frac{\partial f}{\partial x_1}&\frac{\partial f}{\partial x_2}&\frac{\partial f}{\partial x_3}&...&\frac{\partial f}{\partial x_n} \end{bmatrix}^T [∂x1​∂f​​∂x2​∂f​​∂x3​∂f​​...​∂xn​∂f​​]T;

其次,多元函数 f f f在点 p 0 p_0 p0​处的梯度向量与该函数过点 p 0 p_0 p0​处的等位线的切线向量相互正交;

最重要的是,沿着梯度 ∇ f \nabla f ∇f向量方向,函数 f f f的值的增长速度最快,相对应的,沿着负梯度,也就是 − ∇ f -\nabla f −∇f向量的方向&#x

  • 10
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

个人笔记(bug,思路,总结)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值